|
1. Huang, M. H. Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15, 1804726. 2. Huang, M. H.; Naresh, G.; Chen, H.-S. Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10, 4–15. 3. Huang, M. H.; Madasu, M. Facet-Dependent and Interfacial Plane-Related Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 100768. 4. Huang, J.-Y.; Madasu, M.; Huang, M. H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 13027–13033. 5. Thoka, S.; Lee, A.-T.; Huang, M. H. Scalable Synthesis of Size-Tunable Small Cu2O Nanocubes and Octahedra for Facet-Dependent Optical Characterization and Pseudomorphic Conversion to Cu Nanocrystals. ACS Sustain. Chem. Eng. 2019, 7, 10467–10476. 6. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small 2016, 12, 3530–3534. 7. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086–39093. 8. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123, 13664–13671. 9. Lee, A.-T.; Huang, M. H. Synthesis of Size-Tunable Zinc Blende ZnS Nanocrystals. J. Chin. Chem. Soc. 2020, 67, 339–343. 10. Chiu, M.-S.; Lin, C.-C.; Lee, A.-T.; Huang, Y.-C.; Huang, M. H. Aqueous-Phase Synthesis of Size-Tunable PbSe Nanocubes at Room Temperature for Optical Property Characterization. Chem. Eur. J. 2019, 25, 367–372. 11. Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H. Mild Synthesis of Size-Tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020, 32, 2631–2638. 12. Huang, M. H.; Rej, S.; Chiu, C.-Y. Facet-Dependent Optical Properties Revealed through Investigation of Polyhedral Au–Cu2O and Bimetallic Core–Shell Nanocrystals. Small 2015, 11, 2716–2726. 13. Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Facet-Dependent Optical and Photothermal Properties of Au@Ag–Cu2O Core–Shell Nanocrystals. Chem. Mater. 2016, 28, 5140–5146. 14. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15, 2155–2160. 15. Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem. Asian J. 2017, 12, 293–297. 16. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28, 1574–1580. 17. Tan, C.-S.; Huang, M. H. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations. Chem. Eur. J. 2017, 23, 11866–11871. 18. Tan, C.-S.; Hsieh, P.-L.; Chen, L.-J.; Huang, M. H. Silicon Wafers with Facet-Dependent Electrical Conductivity Properties. Angew. Chem. 2017, 129, 15541–15545. 19. Hsieh, P.-L.; Lee, A.-T.; Chen, L.-J.; Huang, M. H. Germanium Wafers Possessing Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2018, 57, 16162–16165. 20. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 2016, 8, 19672–19679. 21. Chu, C.-Y.; Huang, M. H. Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116–15123. 22. Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Highly Facet-Dependent Photocatalytic Properties of Cu2O Crystals Established Through the Formation of Au-Decorated Cu2O Heterostructures. Chem. Eur. J. 2016, 22, 12548–12556. 23. Huang, J.-Y.; Hsieh, P.-L.; Naresh, G.; Tsai, H.-Y.; Huang, M. H. Photocatalytic Activity Suppression of CdS Nanoparticle-Decorated Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 12944–12950. 24. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J. Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2018, 11, 3582–3589. 25. Wu, S.-C.; Tan, C.-S.; Huang, M. H. Strong Facet Effects on Interfacial Charge Transfer Revealed Through the Examination of Photocatalytic Activities of Various Cu2O–ZnO Heterostructures. Adv. Funct. Mater. 2017, 27, 1604635. 26. Naresh, G.; Lee, A.-T.; Meena, V.; Satyanarayana, M.; Huang, M. H. Photocatalytic Activity Suppression of Ag3PO4-Deposited Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2019, 123, 2314–2320. 27. Chanda, K.; Rej, S.; Huang, M. H. Facet-Dependent Catalytic Activity of Cu2O Nanocrystals in the One-Pot Synthesis of 1,2,3-Triazoles by Multicomponent Click Reactions. Chem. Eur. J. 2013, 19, 16036–16043. 28. Chanda, K.; Rej, S.; Huang, M. H. Investigation of Facet Effects on the Catalytic Activity of Cu2O Nanocrystals for Efficient Regioselective Synthesis of 3,5-Disubstituted Isoxazoles. Nanoscale 2013, 5, 12494–12501. 29. Tsai, H.-Y.; Madasu, M.; Huang, M. H. Polyhedral Cu2O Crystals for Diverse Aryl Alkyne Hydroboration Reactions. Chem. Eur. J. 2019, 25, 1300–1303. 30. Madasu, M.; Hsia, C.-F.; Huang, M. H. Au–Cu Core–Shell Nanocube-Catalyzed Click Reactions for Efficient Synthesis of Diverse Triazoles. Nanoscale 2017, 9, 6970–6974. 31. Rej, S.; Chanda, K.; Chiu, C.-Y.; Huang, M. H. Control of Regioselectivity over Gold Nanocrystals of Different Surfaces for the Synthesis of 1,4-Disubstituted Triazole Through the Click Reaction. Chem. Eur. J. 2014, 20, 15991–15997. 32. Tan, C.-S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Germanium (111) and (211) Surface Layers. Chem. Asian J. 2018, 13, 1972–1976. 33. Van Dijken, A.; Makkinje, J.; Meijerink, A. The Influence of Particle Size on the Luminescence Quantum Efficiency of Nanocrystalline ZnO Particles. J. Lumin. 2001, 92, 323–328. 34. Tennakone, K.; Kumara, G.; Kumarasinghe, A.; Wijayantha, K.; Sirimanne, P. A Dye-Sensitized Nano-Porous Solid-State Photovoltaic Cell. Semicond. Sci. Technol. 1995, 10, 1689. 35. Meng, Q.-B.; Takahashi, K.; Zhang, X.-T.; Sutanto, I.; Rao, T.; Sato, O.; Fujishima, A.; Watanabe, H.; Nakamori, T.; Uragami, M. Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell. Langmuir 2003, 19, 3572–3574. 36. Zhang, X.-T.; Liu, H.-W.; Taguchi, T.; Meng, Q.-B.; Sato, O.; Fujishima, A. Slow Interfacial Charge Recombination in Solid-State Dye-Sensitized Solar Cell Using Al2O3-Coated Nanoporous TiO2 Films. Sol. Energy Mater. Sol. Cells 2004, 81, 197–203. 37. Ma, D.; Xia, C. CuI-Catalyzed Coupling Reaction of β-Amino Acids or Esters with Aryl Halides at Temperature Lower Than That Employed in the Normal Ullmann Reaction. Facile Synthesis of SB-214857. Org. Lett. 2001, 3, 2583–2586. 38. Xu, H.-J.; Liang, Y.-F.; Cai, Z.-Y.; Qi, H.-X.; Yang, C.-Y.; Feng, Y.-S. CuI-Nanoparticles-Catalyzed Selective Synthesis of Phenols, Anilines, and Thiophenols from Aryl Halides in Aqueous Solution. J. Org. Chem. 2011, 76, 2296–2300. 39. Xu, H.-J.; Liang, Y.-F.; Zhou, X.-F.; Feng, Y.-S. Efficient Recyclable CuI-Nanoparticle-Catalyzed S-Arylation of Thiols with Aryl Halides on Water Under Mild Conditions. Org. Biomol. Chem. 2012, 10, 2562–2568. 40. Zhu, W.; Ma, D. Formation of Arylboronates by a CuI-Catalyzed Coupling Reaction of Pinacolborane with Aryl Iodides at Room Temperature. Org. Lett. 2006, 8, 261–263. 41. Mallesham, B.; Rajesh, B. M.; Reddy, P. R.; Srinivas, D.; Trehan, S. Highly Efficient CuI-Catalyzed Coupling of Aryl Bromides with Oxazolidinones Using Buchwald's Protocol: a Short Route to Linezolid and Toloxatone. Org. Lett. 2003, 5, 963–965. 42. Chen, C.-Y.; Dormer, P. G. Synthesis of Benzo[b]furans via CuI-Catalyzed Ring Closure. J. Org. Chem. 2005, 70, 6964–6967. 43. Hohloch, S.; Sarkar, B.; Nauton, L.; Cisnetti, F.; Gautier, A. Are Cu(I)-Mesoionic NHC Carbenes Associated With Nitrogen Additives the Best Cu-Carbene Catalysts for the Azide–Alkyne Click Reaction in Solution? A Case Study. Tetrahedron Lett. 2013, 54, 1808–1812. 44. Albadi, J.; Keshavarz, M.; Shirini, F.; Vafaie-nezhad, M. Copper Iodide Nanoparticles on Poly(4-vinyl pyridine): a New and Efficient Catalyst for Multicomponent Click Synthesis of 1,4-Disubstituted-1,2,3-Triazoles in Water. Catal. Commun. 2012, 27, 17–20. 45. Jiang, Y.; Gao, S.; Li, Z.; Jia, X.; Chen, Y. Cauliflower-Like CuI Nanostructures: Green Synthesis and Applications as Catalyst and Adsorbent. Mater. Sci. Eng., B 2011, 176, 1021–1027. 46. Gao, S.; Yang, J.; Li, Z.; Jia, X.; Chen, Y. Bioinspired Synthesis of Hierarchically Micro/Nano-Structured CuI Tetrahedron and Its Potential Application as Adsorbent for Cd (II) with High Removal Capacity. J. Hazard. Mater. 2012, 211, 55–61. 47. Kozhummal, R.; Yang, Y.; Güder, F.; Küçükbayrak, U. M.; Zacharias, M. Antisolvent Crystallization Approach to Construction of CuI Superstructures with Defined Geometries. ACS Nano 2013, 7, 2820–2828. 48. Grundmann, M.; Schein, F.-L.; Lorenz, M.; Böntgen, T.; Lenzner, J.; von Wenckstern, H. Cuprous Iodide – A p-Type Transparent Semiconductor: History and Novel Applications. Phys. Status Solidi A 2013, 210, 1671–1703. 49. Keen, D.; Hull, S. The High-Temperature Structural Behaviour of Copper(I) Iodide. J. Phys.: Condens. Matter 1995, 7, 5793. 50. Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H.; Lorenz, M.; Oeckler, O.; Benstetter, G.; Fu, Y. Q.; Grundmann, M. Transparent Flexible Thermoelectric Material Based on Non-Toxic Earth-Abundant p-Type Copper Iodide Thin Film. Nat. Commun. 2017, 8, 16076. 51. Shahbazi, S.; Afshar, S. A Facile, Green, One Pot Synthesis of Cuprous Iodide Nanoparticles Using The Mechanochemical Method. Mater. Lett. 2014, 115, 190–193. 52. Kang, H.; Liu, R.; Chen, K.; Zheng, Y.; Xu, Z. Electrodeposition and Optical Properties of Highly Oriented γ-CuI Thin Films. Electrochim. Acta 2010, 55, 8121–8125. 53. Ves, S.; Glötzel, D.; Cardona, M.; Overhof, H. Pressure Dependence of the Optical Properties and the Band Structure of the Copper and Silver Halides. Phys. Rev. B 1981, 24, 3073. 54. Jeon, K.; Jee, H.; Park, M. J.; Lim, S.; Jeong, C. Characterization of the Copper Iodide Hole-Selective Contact for Silicon Solar Cell Application. Thin Solid Films 2018, 660, 613–617. 55. Stakhira, P.; Cherpak, V.; Volynyuk, D.; Ivastchyshyn, F.; Hotra, Z.; Tataryn, V.; Luka, G. Characteristics of Organic Light Emitting Diodes with Copper Iodide as Injection Layer. Thin Solid Films 2010, 518, 7016–7018. 56. Gogolin, O.; Deiss, J.; Tsitsichvili, E. The Piezobirefringence in Copper Halides. Il Nuovo Cimento D 1989, 11, 1525–1534. 57. Itoh, T.; Iwabuchi, Y.; Kirihara, T. Size-Quantized Excitons in Microcrystals of Cuprous Halides Embedded in Alkali-Halide Matrices. Phys. Status Solidi B 1988, 146, 531–543. 58. Ma, Y.; Gu, M.; Huang, S.; Liu, X.; Liu, B.; Ni, C. Colloidal Synthesis of Uniform CuI Nanoparticles and Their Size Dependent Optical Properties. Mater. Lett. 2013, 100, 166–169. 59. Zhang, L.; Guo, F.; Liu, X. Growth and Shape Evolution of Octahedral CuI Crystal by a SC-Assisted Hydrothermal Method. Mater. Res. Bull. 2006, 41, 905–908. 60. Zhang, B.; Xie, A.; Shen, Y.; Yang, L.; Huang, Y.; Lu, J. Morphogenesis of CuI Nanocrystals by a TSA-Assisted Photochemical Route: Synthesis, Optical Properties, and Growth Mechanism. Eur. J. Inorg. Chem. 2009, 2009, 1376–1384. 61. Sirimanne, P.; Rusop, M.; Shirata, T.; Soga, T.; Jimbo, T. Characterization of Transparent Conducting CuI Thin Films Prepared by Pulse Laser Deposition Technique. Chem. Phys. Lett. 2002, 366, 485–489. 62. Kumar, M.; Bhatt, V.; Nayal, O. S.; Sharma, S.; Kumar, V.; Thakur, M. S.; Kumar, N.; Bal, R.; Singh, B.; Sharma, U. CuI Nanoparticles as Recyclable Heterogeneous Catalysts for C–N Bond Formation Reactions. Catal. Sci. Technol. 2017, 7, 2857–2864. 63. Zhang, H.; Cai, Q.; Ma, D. Amino Acid Promoted CuI-Catalyzed C−N Bond Formation Between Aryl Halides and Amines or N-Containing Heterocycles. J. Org. Chem. 2005, 70, 5164–5173. 64. Zhu, W.; Ma, D. Synthesis of Aryl Sulfones via L-Proline-Promoted CuI-Catalyzed Coupling Reaction of Aryl Halides with Sulfinic Acid Salts. J. Org. Chem. 2005, 70, 2696–2700. 65. Geng, Y.; Liang, A.; Gao, X.; Niu, C.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. CuI-Catalyzed Fluorodesulfurization for the Synthesis of Monofluoromethyl Aryl Ethers. J. Org. Chem. 2017, 82, 8604–8610. 66. Li, J.-H.; Li, J.-L.; Wang, D.-P.; Pi, S.-F.; Xie, Y.-X.; Zhang, M.-B.; Hu, X.-C. CuI-Catalyzed Suzuki−Miyaura and Sonogashira Cross-Coupling Reactions Using DABCO as Ligand. J. Org. Chem. 2007, 72, 2053–2057. 67. Saadat, S.; Nazari, S.; Afshari, M.; Shahabi, M.; Keshavarz, M. Copper(I) Iodide Nanoparticles on Polyaniline as a Green, Recoverable and Reusable Catalyst for Multicomponent Click Synthesis of 1,4-Disubstituted-1H-1,2,3-Triazoles. Orient. J. Chem. 2015, 31, 1005–1012. 68. M Heravi, M.; Hamidi, H.; Zadsirjan, V. Recent Applications of Click Reaction in the Syntheses of 1,2,3-Triazoles. Curr. Org. Synth. 2014, 11, 647–675. 69. Girard, C.; Önen, E.; Aufort, M.; Beauvière, S.; Samson, E.; Herscovici, J. Reusable Polymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition in Automation Protocols. Org. Lett. 2006, 8, 1689–1692. 70. Bock, V. D.; Hiemstra, H.; Van Maarseveen, J. H. CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. Eur. J. Org. Chem. 2006, 2006, 51–68. 71. Safaei-Ghomi, J.; Ziarati, A.; Teymuri, R. CuI Nanoparticles as New, Efficient and Reusable Catalyst for the One-Pot Synthesis of 1,4-Dihydropyridines. Bull. Korean Chem. Soc 2012, 33, 2679–2682. 72. Nugent, T. C.; El‐Shazly, M. Chiral Amine Synthesis–Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Adv. Synth. Catal. 2010, 352, 753–819. 73. Lindley, J. Tetrahedron Report Number 163: Copper Assisted Nucleophilic Substitution of Aryl Halogen. Tetrahedron 1984, 40, 1433–1456. 74. Nakayama, H.; Kanaoka, Y. Chemical Identification of Binding Sites for Calcium Channel Antagonists. Heterocycles 1996, 42, 901–909. 75. Sorkin, E.; Clissold, S.; Brogden, R. Nifedipine: A Review of Its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Efficacy, in Ischaemic Heart Disease, Hypertension and Related Cardiovascular Disorders. Drugs 1985, 30, 182–274. 76. Kolb, H. C.; Sharpless, K. B. The Growing Impact of Click Chemistry on Drug Discovery. Drug Discov. Today 2003, 8, 1128–1137. 77. Horne, W. S.; Stout, C. D.; Ghadiri, M. R. A Heterocyclic Peptide Nanotube. J. Am. Chem. Soc. 2003, 125, 9372–9376. 78. Horne, W. S.; Yadav, M. K.; Stout, C. D.; Ghadiri, M. R. Heterocyclic Peptide Backbone Modifications in an α-Helical Coiled Coil. J. Am. Chem. Soc. 2004, 126, 15366–15367. 79. Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; Clercq, E. D.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. 1,2,3-Triazole-[2,5-Bis-O-(Tert-Butyldimethylsilyl)-β-D-Ribofuranosyl]-3'-Spiro-5''-(4''-Amino-1'',2''-Oxathiole 2'',2''-Dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. J. Med. Chem. 1994, 37, 4185–4194. 80. Velazquez, S.; Alvarez, R.; Perez, C.; Gago, F.; De Clercq, E.; Balzarini, J.; Camarasa, M. Regiospecific Synthesis and Anti-Human Immunodeficiency Virus Activity of Novel 5-Substituted N-Alkylcarbamoyl and N,N-Dialkyl Carbamoyl 1,2,3-triazole-TSAO analogues. Antiviral Chem. Chemother. 1998, 9, 481–489. 81. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K. Substituent Effects on the Antibacterial Activity of Nitrogen−Carbon-Linked (Azolylphenyl)oxazolidinones with Expanded Activity Against the Fastidious Gram-Negative Organisms Haemophilus influenzae and Moraxella catarrhalis. J. Med. Chem. 2000, 43, 953–970. 82. Meldal, M.; Tornøe, C. W. Cu-Catalyzed Azide−Alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952–3015. 83. Tanaka, K.; Kageyama, C.; Fukase, K. Acceleration of Cu(I)-Mediated Huisgen 1,3-dipolar Cycloaddition by Histidine Derivatives. Tetrahedron Lett. 2007, 48, 6475–6479. 84. Belian, M. F.; da Silva, M. T.; de Andrade Alves, A.; de Oliveira, R. N.; da Silva, W. E. Advantages of the Use of Heterogeneous Catalyst for Huisgen Cycloaddition Reaction: Synthesis and Application of New Metalorganic Material Capable of Regeneration and Reuse. Ecletica Quim J. 2018, 43, 39–47. 85. Biesinger, M. C. Advanced Analysis of Copper X-ray Photoelectron Spectra. Surf. Interface Anal. 2017, 49, 1325–1334. 86. Wu, J. K.; Lyu, L. M.; Liao, C. W.; Wang, Y. N.; Huang, M. H. Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures. Chem. Eur. J. 2012, 18, 14473–14478. 87. Chen, H.-S.; Wu, S.-C.; Huang, M. H. Direct Synthesis of Size-Tunable PbS Nanocubes and Octahedra and the pH Effect on Crystal Shape Control. Dalton Trans. 2015, 44, 15088–15094. 88. Maity, P.; Takano, S.; Yamazoe, S.; Wakabayashi, T.; Tsukuda, T. Binding Motif of Terminal Alkynes on Gold Clusters. J. Am. Chem. Soc. 2013, 135, 9450–9457. 89. Chen, T.-N.; Kao, J.-C.; Zhong, X.-Y.; Chan, S.-J.; Patra, A. S.; Lo, Y.-C.; Huang, M. H. Facet-Specific Photocatalytic Activity Enhancement of Cu2O Polyhedra Functionalized with 4-Ethynylanaline Resulting from Band Structure Tuning. ACS Cent. Sci. 2020, 984–994.
|