帳號:guest(18.188.146.12)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張家豪
作者(外文):Chang, Chia-Hao
論文名稱(中文):合成尺寸可調之四面體碘化亞銅奈米晶體並探討其於1,3-偶極環加成反應之催化效率
論文名稱(外文):Formation of Size-Tunable CuI Tetrahedra for Click Reactions
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):陳貴通
詹益慈
口試委員(外文):Tan, Kui-Thong
Chan, Yi-Tsu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:107023542
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:88
中文關鍵詞:碘化亞銅四面體奈米晶體尺寸可調1,3-偶極環加成
外文關鍵詞:CuIcopperiodidetetrahedrasize-tunableclick
相關次數:
  • 推薦推薦:0
  • 點閱點閱:147
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們成功合成出尺寸可調控的四面體碘化亞銅奈米晶體,尺寸範圍介於56奈米至645奈米之間。碘化亞銅四面體在掃描式電子顯微鏡及穿透式電子顯微鏡的觀察下,可以確保其形狀邊角完整且表面平滑。在粉末式X射線繞射分析中,我們可以得知其屬於面心立方晶系。此外,在選區繞射圖、X射線能譜圖及X射線光電子能譜圖中,我們可以再次驗證合成出來的奈米粒子為具有{111}晶面的碘化亞銅奈米晶體。在紫外光可見光漫反射光譜圖中,我們可以觀察到碘化亞銅四面體在光學上有尺寸及晶面效應。碘化亞銅四面體的能隙會隨著尺寸愈大而有略微紅位移的現象。相比於大顆的碘化亞銅四面體和市售的碘化亞銅粉末,在1,3-偶極環加成反應中,顯露{111}晶面且尺寸為56奈米的碘化亞銅四面體擁有最佳的有機催化活性,展現出我們所合成的碘化亞銅奈米晶體在有機催化應用上的優勢。
We have successfully synthesized size-tunable tetrahedral CuI nanocrystals ranging from 56 nm to 645 nm. SEM and TEM images show that our tetrahedral nanoparticles have sharp edges and smooth surfaces. PXRD patterns confirm a face-centered cubic lattice for CuI. Moreover, SAED patterns, EDS elemental mapping images, and HRXPS spectra confirm that our synthesized nanocrystals are CuI bound by the {111} facets. UV–vis DRS results reveal that the CuI tetrahedra exhibit size- and facet-dependent optical properties. The band gap of CuI is slightly red-shifted with increasing sizes. In click reaction, {111}-bound 56 nm CuI tetrahedra achieved the best product yield compared to those larger tetrahedra and commercial CuI powder, demonstrating the advantage of using these designed CuI for catalytic applications.
論文摘要 I
ABSTRACT II
ACKNOWLEDGEMENT III
TABLE OF CONTENTS IV
LIST OF FIGURES VI
LIST OF SCHEMES X
LIST OF TABLES XI
LIST OF APPENDIX XIII
1 Facet-Dependent Properties of Semiconductor Crystals 1
1.1 Size- and facet-dependent properties 1
1.1.1 Facet-dependent electrical conductivity properties of Cu2O and Ag2O nanocrystals 1
1.1.2 Facet- and size-dependent optical properties of Cu2O nanocrystals 9
1.1.3 Facet-dependent catalytic properties of Cu2O nanocrystals 13
1.2 Copper iodide 16
1.2.1 Reported synthetic procedure of CuI in an organic phase 17
1.2.2 Reported synthetic procedures of CuI in an aqueous phase 18
1.2.3 Optical properties of CuI 20
1.2.4 Organic reactions using CuI as catalyst 21
2 Synthesis of Size-Tunable CuI Tetrahedra for Optical Characterization and Click Reactions 25
3 Experimental Section 27
3.1 Chemical 27
3.2 Instrumentation 27
3.3 One-pot synthesis of size-tunable tetrahedral CuI nanocrystals 28
3.3.1 One-pot synthesis of size-tunable tetrahedral CuI nanocrystals by adjusting the reaction temperature 28
3.3.2 One-pot synthesis of size-tunable tetrahedral CuI nanocrystals by adjusting the amount of Na2SO4 30
3.4 One-pot synthesis of ultrasmall tetrahedral CuI nanocrystals 31
3.5 Scaling up the synthetic procedure of size-tunable tetrahedral CuI nanocrystals 32
3.6 Large scale synthesis of ultrasmall tetrahedral CuI nanocrystals 33
3.7 Use ultrasmall tetrahedral CuI nanocrystals for click reactions 34
4 Results and Discussion 36
4.1 Characterization of size-tunable CuI nanocrystals 36
4.1.1 Scanning electron microscopy (SEM) 37
4.1.2 Powder X-ray diffraction (PXRD) 42
4.1.3 Transmission electron microscopy (TEM) 43
4.1.4 Energy-dispersive X-ray spectroscopy (EDS) 44
4.1.5 High-resolution X-ray photoelectron spectroscopy (HRXPS) 45
4.2 Hypothesized formation mechanism and discussion 49
4.3 The size and facet effects in optical properties 54
4.4 CuI tetrahedra for click reactions 58
5 Conclusion 70
REFERENCES 71
APPENDIX 79
1. Huang, M. H. Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15, 1804726.
2. Huang, M. H.; Naresh, G.; Chen, H.-S. Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10, 4–15.
3. Huang, M. H.; Madasu, M. Facet-Dependent and Interfacial Plane-Related Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 100768.
4. Huang, J.-Y.; Madasu, M.; Huang, M. H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 13027–13033.
5. Thoka, S.; Lee, A.-T.; Huang, M. H. Scalable Synthesis of Size-Tunable Small Cu2O Nanocubes and Octahedra for Facet-Dependent Optical Characterization and Pseudomorphic Conversion to Cu Nanocrystals. ACS Sustain. Chem. Eng. 2019, 7, 10467–10476.
6. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small 2016, 12, 3530–3534.
7. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086–39093.
8. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123, 13664–13671.
9. Lee, A.-T.; Huang, M. H. Synthesis of Size-Tunable Zinc Blende ZnS Nanocrystals. J. Chin. Chem. Soc. 2020, 67, 339–343.
10. Chiu, M.-S.; Lin, C.-C.; Lee, A.-T.; Huang, Y.-C.; Huang, M. H. Aqueous-Phase Synthesis of Size-Tunable PbSe Nanocubes at Room Temperature for Optical Property Characterization. Chem. Eur. J. 2019, 25, 367–372.
11. Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H. Mild Synthesis of Size-Tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020, 32, 2631–2638.
12. Huang, M. H.; Rej, S.; Chiu, C.-Y. Facet-Dependent Optical Properties Revealed through Investigation of Polyhedral Au–Cu2O and Bimetallic Core–Shell Nanocrystals. Small 2015, 11, 2716–2726.
13. Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Facet-Dependent Optical and Photothermal Properties of Au@Ag–Cu2O Core–Shell Nanocrystals. Chem. Mater. 2016, 28, 5140–5146.
14. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15, 2155–2160.
15. Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem. Asian J. 2017, 12, 293–297.
16. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28, 1574–1580.
17. Tan, C.-S.; Huang, M. H. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations. Chem. Eur. J. 2017, 23, 11866–11871.
18. Tan, C.-S.; Hsieh, P.-L.; Chen, L.-J.; Huang, M. H. Silicon Wafers with Facet-Dependent Electrical Conductivity Properties. Angew. Chem. 2017, 129, 15541–15545.
19. Hsieh, P.-L.; Lee, A.-T.; Chen, L.-J.; Huang, M. H. Germanium Wafers Possessing Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2018, 57, 16162–16165.
20. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 2016, 8, 19672–19679.
21. Chu, C.-Y.; Huang, M. H. Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116–15123.
22. Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Highly Facet-Dependent Photocatalytic Properties of Cu2O Crystals Established Through the Formation of Au-Decorated Cu2O Heterostructures. Chem. Eur. J. 2016, 22, 12548–12556.
23. Huang, J.-Y.; Hsieh, P.-L.; Naresh, G.; Tsai, H.-Y.; Huang, M. H. Photocatalytic Activity Suppression of CdS Nanoparticle-Decorated Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 12944–12950.
24. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J. Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2018, 11, 3582–3589.
25. Wu, S.-C.; Tan, C.-S.; Huang, M. H. Strong Facet Effects on Interfacial Charge Transfer Revealed Through the Examination of Photocatalytic Activities of Various Cu2O–ZnO Heterostructures. Adv. Funct. Mater. 2017, 27, 1604635.
26. Naresh, G.; Lee, A.-T.; Meena, V.; Satyanarayana, M.; Huang, M. H. Photocatalytic Activity Suppression of Ag3PO4-Deposited Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2019, 123, 2314–2320.
27. Chanda, K.; Rej, S.; Huang, M. H. Facet-Dependent Catalytic Activity of Cu2O Nanocrystals in the One-Pot Synthesis of 1,2,3-Triazoles by Multicomponent Click Reactions. Chem. Eur. J. 2013, 19, 16036–16043.
28. Chanda, K.; Rej, S.; Huang, M. H. Investigation of Facet Effects on the Catalytic Activity of Cu2O Nanocrystals for Efficient Regioselective Synthesis of 3,5-Disubstituted Isoxazoles. Nanoscale 2013, 5, 12494–12501.
29. Tsai, H.-Y.; Madasu, M.; Huang, M. H. Polyhedral Cu2O Crystals for Diverse Aryl Alkyne Hydroboration Reactions. Chem. Eur. J. 2019, 25, 1300–1303.
30. Madasu, M.; Hsia, C.-F.; Huang, M. H. Au–Cu Core–Shell Nanocube-Catalyzed Click Reactions for Efficient Synthesis of Diverse Triazoles. Nanoscale 2017, 9, 6970–6974.
31. Rej, S.; Chanda, K.; Chiu, C.-Y.; Huang, M. H. Control of Regioselectivity over Gold Nanocrystals of Different Surfaces for the Synthesis of 1,4-Disubstituted Triazole Through the Click Reaction. Chem. Eur. J. 2014, 20, 15991–15997.
32. Tan, C.-S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Germanium (111) and (211) Surface Layers. Chem. Asian J. 2018, 13, 1972–1976.
33. Van Dijken, A.; Makkinje, J.; Meijerink, A. The Influence of Particle Size on the Luminescence Quantum Efficiency of Nanocrystalline ZnO Particles. J. Lumin. 2001, 92, 323–328.
34. Tennakone, K.; Kumara, G.; Kumarasinghe, A.; Wijayantha, K.; Sirimanne, P. A Dye-Sensitized Nano-Porous Solid-State Photovoltaic Cell. Semicond. Sci. Technol. 1995, 10, 1689.
35. Meng, Q.-B.; Takahashi, K.; Zhang, X.-T.; Sutanto, I.; Rao, T.; Sato, O.; Fujishima, A.; Watanabe, H.; Nakamori, T.; Uragami, M. Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell. Langmuir 2003, 19, 3572–3574.
36. Zhang, X.-T.; Liu, H.-W.; Taguchi, T.; Meng, Q.-B.; Sato, O.; Fujishima, A. Slow Interfacial Charge Recombination in Solid-State Dye-Sensitized Solar Cell Using Al2O3-Coated Nanoporous TiO2 Films. Sol. Energy Mater. Sol. Cells 2004, 81, 197–203.
37. Ma, D.; Xia, C. CuI-Catalyzed Coupling Reaction of β-Amino Acids or Esters with Aryl Halides at Temperature Lower Than That Employed in the Normal Ullmann Reaction. Facile Synthesis of SB-214857. Org. Lett. 2001, 3, 2583–2586.
38. Xu, H.-J.; Liang, Y.-F.; Cai, Z.-Y.; Qi, H.-X.; Yang, C.-Y.; Feng, Y.-S. CuI-Nanoparticles-Catalyzed Selective Synthesis of Phenols, Anilines, and Thiophenols from Aryl Halides in Aqueous Solution. J. Org. Chem. 2011, 76, 2296–2300.
39. Xu, H.-J.; Liang, Y.-F.; Zhou, X.-F.; Feng, Y.-S. Efficient Recyclable CuI-Nanoparticle-Catalyzed S-Arylation of Thiols with Aryl Halides on Water Under Mild Conditions. Org. Biomol. Chem. 2012, 10, 2562–2568.
40. Zhu, W.; Ma, D. Formation of Arylboronates by a CuI-Catalyzed Coupling Reaction of Pinacolborane with Aryl Iodides at Room Temperature. Org. Lett. 2006, 8, 261–263.
41. Mallesham, B.; Rajesh, B. M.; Reddy, P. R.; Srinivas, D.; Trehan, S. Highly Efficient CuI-Catalyzed Coupling of Aryl Bromides with Oxazolidinones Using Buchwald's Protocol: a Short Route to Linezolid and Toloxatone. Org. Lett. 2003, 5, 963–965.
42. Chen, C.-Y.; Dormer, P. G. Synthesis of Benzo[b]furans via CuI-Catalyzed Ring Closure. J. Org. Chem. 2005, 70, 6964–6967.
43. Hohloch, S.; Sarkar, B.; Nauton, L.; Cisnetti, F.; Gautier, A. Are Cu(I)-Mesoionic NHC Carbenes Associated With Nitrogen Additives the Best Cu-Carbene Catalysts for the Azide–Alkyne Click Reaction in Solution? A Case Study. Tetrahedron Lett. 2013, 54, 1808–1812.
44. Albadi, J.; Keshavarz, M.; Shirini, F.; Vafaie-nezhad, M. Copper Iodide Nanoparticles on Poly(4-vinyl pyridine): a New and Efficient Catalyst for Multicomponent Click Synthesis of 1,4-Disubstituted-1,2,3-Triazoles in Water. Catal. Commun. 2012, 27, 17–20.
45. Jiang, Y.; Gao, S.; Li, Z.; Jia, X.; Chen, Y. Cauliflower-Like CuI Nanostructures: Green Synthesis and Applications as Catalyst and Adsorbent. Mater. Sci. Eng., B 2011, 176, 1021–1027.
46. Gao, S.; Yang, J.; Li, Z.; Jia, X.; Chen, Y. Bioinspired Synthesis of Hierarchically Micro/Nano-Structured CuI Tetrahedron and Its Potential Application as Adsorbent for Cd (II) with High Removal Capacity. J. Hazard. Mater. 2012, 211, 55–61.
47. Kozhummal, R.; Yang, Y.; Güder, F.; Küçükbayrak, U. M.; Zacharias, M. Antisolvent Crystallization Approach to Construction of CuI Superstructures with Defined Geometries. ACS Nano 2013, 7, 2820–2828.
48. Grundmann, M.; Schein, F.-L.; Lorenz, M.; Böntgen, T.; Lenzner, J.; von Wenckstern, H. Cuprous Iodide – A p-Type Transparent Semiconductor: History and Novel Applications. Phys. Status Solidi A 2013, 210, 1671–1703.
49. Keen, D.; Hull, S. The High-Temperature Structural Behaviour of Copper(I) Iodide. J. Phys.: Condens. Matter 1995, 7, 5793.
50. Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H.; Lorenz, M.; Oeckler, O.; Benstetter, G.; Fu, Y. Q.; Grundmann, M. Transparent Flexible Thermoelectric Material Based on Non-Toxic Earth-Abundant p-Type Copper Iodide Thin Film. Nat. Commun. 2017, 8, 16076.
51. Shahbazi, S.; Afshar, S. A Facile, Green, One Pot Synthesis of Cuprous Iodide Nanoparticles Using The Mechanochemical Method. Mater. Lett. 2014, 115, 190–193.
52. Kang, H.; Liu, R.; Chen, K.; Zheng, Y.; Xu, Z. Electrodeposition and Optical Properties of Highly Oriented γ-CuI Thin Films. Electrochim. Acta 2010, 55, 8121–8125.
53. Ves, S.; Glötzel, D.; Cardona, M.; Overhof, H. Pressure Dependence of the Optical Properties and the Band Structure of the Copper and Silver Halides. Phys. Rev. B 1981, 24, 3073.
54. Jeon, K.; Jee, H.; Park, M. J.; Lim, S.; Jeong, C. Characterization of the Copper Iodide Hole-Selective Contact for Silicon Solar Cell Application. Thin Solid Films 2018, 660, 613–617.
55. Stakhira, P.; Cherpak, V.; Volynyuk, D.; Ivastchyshyn, F.; Hotra, Z.; Tataryn, V.; Luka, G. Characteristics of Organic Light Emitting Diodes with Copper Iodide as Injection Layer. Thin Solid Films 2010, 518, 7016–7018.
56. Gogolin, O.; Deiss, J.; Tsitsichvili, E. The Piezobirefringence in Copper Halides. Il Nuovo Cimento D 1989, 11, 1525–1534.
57. Itoh, T.; Iwabuchi, Y.; Kirihara, T. Size-Quantized Excitons in Microcrystals of Cuprous Halides Embedded in Alkali-Halide Matrices. Phys. Status Solidi B 1988, 146, 531–543.
58. Ma, Y.; Gu, M.; Huang, S.; Liu, X.; Liu, B.; Ni, C. Colloidal Synthesis of Uniform CuI Nanoparticles and Their Size Dependent Optical Properties. Mater. Lett. 2013, 100, 166–169.
59. Zhang, L.; Guo, F.; Liu, X. Growth and Shape Evolution of Octahedral CuI Crystal by a SC-Assisted Hydrothermal Method. Mater. Res. Bull. 2006, 41, 905–908.
60. Zhang, B.; Xie, A.; Shen, Y.; Yang, L.; Huang, Y.; Lu, J. Morphogenesis of CuI Nanocrystals by a TSA-Assisted Photochemical Route: Synthesis, Optical Properties, and Growth Mechanism. Eur. J. Inorg. Chem. 2009, 2009, 1376–1384.
61. Sirimanne, P.; Rusop, M.; Shirata, T.; Soga, T.; Jimbo, T. Characterization of Transparent Conducting CuI Thin Films Prepared by Pulse Laser Deposition Technique. Chem. Phys. Lett. 2002, 366, 485–489.
62. Kumar, M.; Bhatt, V.; Nayal, O. S.; Sharma, S.; Kumar, V.; Thakur, M. S.; Kumar, N.; Bal, R.; Singh, B.; Sharma, U. CuI Nanoparticles as Recyclable Heterogeneous Catalysts for C–N Bond Formation Reactions. Catal. Sci. Technol. 2017, 7, 2857–2864.
63. Zhang, H.; Cai, Q.; Ma, D. Amino Acid Promoted CuI-Catalyzed C−N Bond Formation Between Aryl Halides and Amines or N-Containing Heterocycles. J. Org. Chem. 2005, 70, 5164–5173.
64. Zhu, W.; Ma, D. Synthesis of Aryl Sulfones via L-Proline-Promoted CuI-Catalyzed Coupling Reaction of Aryl Halides with Sulfinic Acid Salts. J. Org. Chem. 2005, 70, 2696–2700.
65. Geng, Y.; Liang, A.; Gao, X.; Niu, C.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. CuI-Catalyzed Fluorodesulfurization for the Synthesis of Monofluoromethyl Aryl Ethers. J. Org. Chem. 2017, 82, 8604–8610.
66. Li, J.-H.; Li, J.-L.; Wang, D.-P.; Pi, S.-F.; Xie, Y.-X.; Zhang, M.-B.; Hu, X.-C. CuI-Catalyzed Suzuki−Miyaura and Sonogashira Cross-Coupling Reactions Using DABCO as Ligand. J. Org. Chem. 2007, 72, 2053–2057.
67. Saadat, S.; Nazari, S.; Afshari, M.; Shahabi, M.; Keshavarz, M. Copper(I) Iodide Nanoparticles on Polyaniline as a Green, Recoverable and Reusable Catalyst for Multicomponent Click Synthesis of 1,4-Disubstituted-1H-1,2,3-Triazoles. Orient. J. Chem. 2015, 31, 1005–1012.
68. M Heravi, M.; Hamidi, H.; Zadsirjan, V. Recent Applications of Click Reaction in the Syntheses of 1,2,3-Triazoles. Curr. Org. Synth. 2014, 11, 647–675.
69. Girard, C.; Önen, E.; Aufort, M.; Beauvière, S.; Samson, E.; Herscovici, J. Reusable Polymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition in Automation Protocols. Org. Lett. 2006, 8, 1689–1692.
70. Bock, V. D.; Hiemstra, H.; Van Maarseveen, J. H. CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. Eur. J. Org. Chem. 2006, 2006, 51–68.
71. Safaei-Ghomi, J.; Ziarati, A.; Teymuri, R. CuI Nanoparticles as New, Efficient and Reusable Catalyst for the One-Pot Synthesis of 1,4-Dihydropyridines. Bull. Korean Chem. Soc 2012, 33, 2679–2682.
72. Nugent, T. C.; El‐Shazly, M. Chiral Amine Synthesis–Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Adv. Synth. Catal. 2010, 352, 753–819.
73. Lindley, J. Tetrahedron Report Number 163: Copper Assisted Nucleophilic Substitution of Aryl Halogen. Tetrahedron 1984, 40, 1433–1456.
74. Nakayama, H.; Kanaoka, Y. Chemical Identification of Binding Sites for Calcium Channel Antagonists. Heterocycles 1996, 42, 901–909.
75. Sorkin, E.; Clissold, S.; Brogden, R. Nifedipine: A Review of Its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Efficacy, in Ischaemic Heart Disease, Hypertension and Related Cardiovascular Disorders. Drugs 1985, 30, 182–274.
76. Kolb, H. C.; Sharpless, K. B. The Growing Impact of Click Chemistry on Drug Discovery. Drug Discov. Today 2003, 8, 1128–1137.
77. Horne, W. S.; Stout, C. D.; Ghadiri, M. R. A Heterocyclic Peptide Nanotube. J. Am. Chem. Soc. 2003, 125, 9372–9376.
78. Horne, W. S.; Yadav, M. K.; Stout, C. D.; Ghadiri, M. R. Heterocyclic Peptide Backbone Modifications in an α-Helical Coiled Coil. J. Am. Chem. Soc. 2004, 126, 15366–15367.
79. Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; Clercq, E. D.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J. 1,2,3-Triazole-[2,5-Bis-O-(Tert-Butyldimethylsilyl)-β-D-Ribofuranosyl]-3'-Spiro-5''-(4''-Amino-1'',2''-Oxathiole 2'',2''-Dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. J. Med. Chem. 1994, 37, 4185–4194.
80. Velazquez, S.; Alvarez, R.; Perez, C.; Gago, F.; De Clercq, E.; Balzarini, J.; Camarasa, M. Regiospecific Synthesis and Anti-Human Immunodeficiency Virus Activity of Novel 5-Substituted N-Alkylcarbamoyl and N,N-Dialkyl Carbamoyl 1,2,3-triazole-TSAO analogues. Antiviral Chem. Chemother. 1998, 9, 481–489.
81. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K. Substituent Effects on the Antibacterial Activity of Nitrogen−Carbon-Linked (Azolylphenyl)oxazolidinones with Expanded Activity Against the Fastidious Gram-Negative Organisms Haemophilus influenzae and Moraxella catarrhalis. J. Med. Chem. 2000, 43, 953–970.
82. Meldal, M.; Tornøe, C. W. Cu-Catalyzed Azide−Alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952–3015.
83. Tanaka, K.; Kageyama, C.; Fukase, K. Acceleration of Cu(I)-Mediated Huisgen 1,3-dipolar Cycloaddition by Histidine Derivatives. Tetrahedron Lett. 2007, 48, 6475–6479.
84. Belian, M. F.; da Silva, M. T.; de Andrade Alves, A.; de Oliveira, R. N.; da Silva, W. E. Advantages of the Use of Heterogeneous Catalyst for Huisgen Cycloaddition Reaction: Synthesis and Application of New Metalorganic Material Capable of Regeneration and Reuse. Ecletica Quim J. 2018, 43, 39–47.
85. Biesinger, M. C. Advanced Analysis of Copper X-ray Photoelectron Spectra. Surf. Interface Anal. 2017, 49, 1325–1334.
86. Wu, J. K.; Lyu, L. M.; Liao, C. W.; Wang, Y. N.; Huang, M. H. Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures. Chem. Eur. J. 2012, 18, 14473–14478.
87. Chen, H.-S.; Wu, S.-C.; Huang, M. H. Direct Synthesis of Size-Tunable PbS Nanocubes and Octahedra and the pH Effect on Crystal Shape Control. Dalton Trans. 2015, 44, 15088–15094.
88. Maity, P.; Takano, S.; Yamazoe, S.; Wakabayashi, T.; Tsukuda, T. Binding Motif of Terminal Alkynes on Gold Clusters. J. Am. Chem. Soc. 2013, 135, 9450–9457.
89. Chen, T.-N.; Kao, J.-C.; Zhong, X.-Y.; Chan, S.-J.; Patra, A. S.; Lo, Y.-C.; Huang, M. H. Facet-Specific Photocatalytic Activity Enhancement of Cu2O Polyhedra Functionalized with 4-Ethynylanaline Resulting from Band Structure Tuning. ACS Cent. Sci. 2020, 984–994.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
2. 氧化鋅與氧化鎘奈米線的合成
3. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
4. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
5. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
6. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
7. 水溶液加熱還原法合成二維金奈米晶體
8. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
9. 一、奈米金結構之合成、官能基化與組裝 二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
10. Growth of ZnO and CdO Nanowires by Vapor Transport. Synthesis of Core-Shell Ga-GaN Nanostructures and GaN Hollow Spheres via Reflux Method
11. 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
12. 利用中孔洞氧化矽材料形成氮化銦及氧化銦奈米棒的製備與光譜分析
13. 以植晶法製備鈀奈米棒和具分支的鈀奈米晶體與可調控之高徑長比金奈米棒的合成
14. 合成規則性中孔洞有機矽薄膜並在有機矽孔壁存在分子尺寸規則排列
15. 水熱法合成金奈米八面體與不同金屬離子對其形狀的影響
 
* *