帳號:guest(3.143.218.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施孟辰
作者(外文):Shih, Meng-Chen
論文名稱(中文):以時域解析紅外吸收光譜法研究亞硝酸根於含有醇類水溶液之光解反應與動力學
論文名稱(外文):Infrared Spectroscopic and Kinetic Characterization on the Photolysis of Nitrite in Alcohol-Containing Aqueous Solutions
指導教授(中文):朱立岡
指導教授(外文):Chu, Li-Kang
口試委員(中文):周佳駿
張智煒
口試委員(外文):Chou, Chia-Chun
Chang, Chih-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:107023533
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:79
中文關鍵詞:紅外吸收光譜法亞硝酸根醇類水溶液光解動力學氣溶膠
外文關鍵詞:Infrared SpectroscopicNitriteAlcoholAqueous solutionPhotolysisKineticAerosol
相關次數:
  • 推薦推薦:0
  • 點閱點閱:417
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
亞硝酸根(NO2-)水溶液是環境中OH與NO自由基的光解前驅物之一。由於近年來生物燃料逐漸取代部分化石燃料,大氣中CH3OH與C2H5OH的濃度隨著提升。然而NO自由基與醇類之反應動力學及NO2-水溶液於醇類存在下之光解反應動力學卻仍未被詳細探討。因此吾人將使用步進式時間解析紅外光譜儀觀測NaNO2水溶液與分別添加不同濃度CH3OH或C2H5OH的NaNO2水溶液受355 nm脈衝雷射激發後之時間解析紅外差異吸收光譜,並利用B3LYP密度泛函方法搭配基底函數aug-cc-pVTZ結合水溶劑效應(CPCM),預測相關分子之絕對能量與簡諧振動波數等特性。NO2-水溶液受光解後,紅外光譜中於1 ms內1860-2030 cm-1之差異吸收度為正值,吾人將其指認為N2O3異構物為主的生成,此可能係因NO2-之光解產物NO自由基與NO2進行締合反應後所形成,其中NO2的來源為光解產物OH自由基與NO2-快速反應。當添加高濃度醇類後,N2O3之消逝反應速率些微變慢,依據反應機構與預測之反應熱,吾人認為是因N2O3與醇類之反應活性較與水之反應活性低,且加入高濃度醇類後使得溶液中水濃度下降所致。若比較N2O3於未添加及添加不同濃度CH3OH或C2H5OH中之消逝反應速率,吾人推算醇類與NO或NO2於水溶液中之反應速率常數上界約為7.3 × 103 M-1 s-1。此研究提供之醇類與NO、NO2及N2O3於水溶液中之反應光譜與動力學資訊,能夠協助更加了解醇類與NxOy物種於水溶液中與溼氣溶膠中之光化學反應機制。
Nitrite (NO2-) is regarded as a potential OH and NO precursor in aqueous solution upon ultraviolet photolysis. Besides, due to the usage of biofuels in recent years, the concentrations of CH3OH and C2H5OH have increased in the troposphere. However, the reaction kinetics of NO with alcohols and NO2- in alcohol-containing aqueous solutions after ultraviolet photolysis are insufficiently understood. Therefore, in this experiment, a step-scan Fourier-transform interferometer was employed to collect the transient infrared difference spectra upon excitation of the sodium nitrite aqueous solution in the absence and presence of methanol or ethanol upon 355 nm pulsed excitation. Coupled with the predicted absolute energies and harmonic wavenumbers using B3LYP density functional theory and aug-cc-pVTZ method with the CPCM model to account for the medium effect of H2O, a transient band at 1860-2030 cm-1 in 1 ms could be attributed to dissolved N2O3 isomers that could be generated from the association reaction of the photolytic intermediates, NO and NO2, in which NO2 can be generated from the rapid reaction of OH and NO2-. After adding a high concentration of alcohols, the depletion rate of N2O3 decelerated slightly. According to the reaction mechanisms and predicted thermodynamics, this might be due to the less reactivity of N2O3 with alcohols compared to water. In addition, comparing the transient population of N2O3 in the absence and presence of CH3OH or C2H5OH, the upper-bound bimolecular rate coefficient of NO or NO2 with alcohols is reported as 7.3 × 103 M-1 s-1. The spectroscopic and kinetic evidence of the reactivity of alcohols with NO, NO2, and N2O3 are provided to augment the roles of alcohols and NxOy in solution or in aqueous aerosol photochemistry.
第一章 緒論 1
1.1 氣溶膠於大氣化學反應之重要性 1
1.1.1 氣溶膠的來源、種類與組成 1
1.1.2 溼氣溶膠提供之反應環境 2
1.2 大氣中亞硝酸根(NO2-)的來源與重要性 2
1.2.1 NO2-於水相的光解 2
1.2.2 OH及NO自由基之重要性與反應 3
1.3 大氣中CH3OH與C2H5OH的來源、重要性及與自由基之反應 4
1.4 研究動機 5
參考文獻 13
第二章 光譜技術原理、實驗系統架設及樣品溶液製備 17
2.1 傅立葉轉換紅外光譜儀 17
2.1.1 麥克森干涉儀 17
2.1.2 單色光與多色光干涉 18
2.1.3 傅立葉轉換 19
2.1.4 截斷函數與削足函數 19
2.1.5 相位誤差與相位校正 21
2.1.6 連續式掃描模式 21
2.2 步進式掃描時間解析傅立葉轉換紅外光譜術 22
2.2.1 工作原理 22
2.2.2 跳點取樣 23
2.2.3 AC/DC耦合數據擷取原理 24
2.3 靜態光譜儀 25
2.3.1 靜態紫外/可見光吸收光譜儀 25
2.3.2衰減全反射式掃描傅立葉轉換紅外光譜儀 25
2.4 時間解析紅外差異吸收光譜之實驗系統架設 26
2.4.1 雷射激發系統 26
2.4.2 樣品推進系統 26
2.4.3 樣品槽 26
2.4.4 步進式掃描時間解析傅立葉轉換紅外光譜儀 26
2.4.5 數據擷取系統 26
2.5 儀器參數設定 27
2.5.1 靜態紫外/可見光吸收光譜儀 27
2.5.2 衰減全反射式掃描傅立葉轉換紅外光譜儀 27
2.5.3 步進式掃描傅立葉轉換紅外光譜儀 28
2.6 樣品溶液製備 30
2.6.1 NaNO2水溶液 30
2.6.2 NaNO2/CH3OH莫耳數20/1、5/1與1/1之混合水溶液 30
2.6.3 NaNO2/C2H5OH莫耳數20/1、5/1與1/1之混合水溶液 30
參考文獻 46
第三章 理論計算 47
3.1 最佳化結構 47
3.2 預測之絕對能量與簡諧振動波數 47
參考文獻 56
第四章 結果與討論 57
4.1 靜態紅外與紫外/可見光吸收光譜 57
4.2 光解NaNO2水溶液之時間解析紅外差異吸收光譜 58
4.3 添加不同濃度CH3OH或C2H5OH之NaNO2水溶液的光解反應 61
4.3.1 時間解析差異吸收光譜 61
4.3.2 動力學分析 62
參考文獻 71
第五章 結論 72
附錄 A-1

第一章
[1] Pöschl, U. Angew. Chem. Int. Ed. 2005, 44, 7520-7540.
[2] George, C.; Ammann, M.; D’Anna, B.; Donaldson, D. J.; Nizkorodov, S. A. Chem. Rev. 2015, 115, 4218-4258.
[3] Ramanathan, V.; Crutzen, P. J.; Kiehl, J. T.; Rosenfeld, D. Science 2001, 294, 2119-2124.
[4] Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, JR., J. A.; Hansen, J. E.; Hofmann, D. J. Science 1992, 255, 423-430.
[5] Taylor, K. E.; Penner, J. E. Nature 1994, 369, 734-737.
[6] Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C. J.; Fushimi, A.; Enami, S.; Arangio, A. M.; Fröhlich-Nowoisky, J.; Fujitani, Y. et al. Environ. Sci. Technol. 2017, 51, 13545-13567.
[7]Medina-Ramón, M.; Zanobetti, A.; Schwartz, J. Am. J. Epidemiol. 2006, 163, 579-588.
[8] Lelieveld, J.; Evans, J. S.; Fnais, M.; Giannadaki, D.; Pozzer, A. Nature 2015, 525, 367-371.
[9] O’Dowd, C. D.; De Leeuw, G. Phil. Trans. R. Soc. A 2007, 365, 1753-1774.
[10] Després, V. R.; Huffman, J. A.; Burrows, S. M.; Hoose, C.; Safatov, A. S.; Buryak, G.; Fröhlich-Nowoisky J.; Elbert, W.; Andreae, M. O.; Pöschl, U.; Jaenicke, R. Tellus B 2012, 64, 15598.
[11] Szidat, S.; Jenk, T. M.; Synal, H.-A.; Kalberer, M.; Wacker, L.; Hajdas, I.; Kasper-Giebl, A.; Baltensperger, U. J. Geophys. Res. 2006, 111, D07206.
[12] Ziemann, P. J.; Atkinson, R. Chem. Soc. Rev. 2012, 41, 6582-6605.
[13] McNeill, V. F. Environ. Sci. Technol. 2015, 49, 1237-1244.
[14] Lammel, G.; Cape, J. N. Chem. Soc. Rev. 1996, 25, 361-369.
[15] Kolb, C. E.; Cox, R. A.; Abbatt, J. P. D.; Ammann, M.; Davis, E. J.; Donaldson, D. J.; Garrett, B. C.; George, C.; Griffiths, P. T.; Hanson, D. R. et al. Atmos. Chem. Phys. 2010, 10, 10561-10605.
[16] Valsaraj, K. T. Open J. Phys. Chem. 2012, 2, 58-66.
[17] Watanabe, H.; Yamaguchi, S.; Sen, S.; Morita, A.; Tahara, T. J. Chem. Phys. 2010, 132, 144701.
[18] Herrmann, H.; Hoffmann, D.; Schaefer, T.; Braüer, P.; Tilgner, A. ChemPhysChem 2010, 11, 3796–3822.
[19] Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 513-886.
[20] Neta, P.; Huie, R. E.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284.
[21] Herrmann, H. Chem. Rev. 2003, 103, 4691−4716.
[22] NDRL/NIST Solution Kinetics Database on the Web, NIST Standard Reference Database 40, A compilation of kinetics data on solution-phase reactions.
[23] Canfield, D. E.; Glazer, A. N.; Falkowski, P. G. Science 2010, 330, 192-196.
[24] Pajares, S.; Bohannan, B. J. M. Front. Microbiol. 2016, 7, 1045.
[25] Kulmala, M.; Petäjä, T. Science 2011, 333, 1586-1587.
[26] Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K.; et al. Science 2018, 360, eaar6611.
[27] Su, H.; Cheng, Y.; Oswald, R.; Behrendt, T.; Trebs, I.; Meixner, F. X.; Andreae, M. O.; Cheng, P.; Zhang, Y.; Pöschl, U. Science 2011, 333, 1616-1618.
[28] Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Chem. Rev. 2015, 115, 13051-13092.
[29] Cleemput, O. V.; Samater, A. H. Fert. Res. 1996, 45, 81-89.
[30] Jacobi, H.-W.; Kleffmann, J.; Villena, G.; Wiesen, P.; King, M.; France, J.; Anastasio, C.; Staebler, R. Environ. Sci. Technol. 2014, 48, 165−172.
[31] Strickler, S. J.; Kasha, M. J. Am. Chem. Soc. 1963, 85, 2899-2901.
[32] Opländer, C.; Suschek, C. V. Int. J. Mol. Sci. 2013, 14, 191-204.
[33] Bilski, P.; Chignell, C. F.; Szychlinski, J.; Borkowski, A.; Oleksy, E.; Reszka, K. J. Am. Chem. Soc. 1992, 114, 549-556.
[34] Fischer, M.; Warneck, P. J. Phys. Chem. 1996, 100, 18749-18756.
[35] Chu, L.; Anastasio, K. Environ. Sci. Technol. 2007, 41, 3626-3632.
[36] Zellner, R.; Exner, M.; Herrman, H. J. Atmos. Chem. 1990, 10, 411-425.
[37] Treinin, A.; Hayon, E. J. Am. Chem. Soc. 1970, 92, 5821-5828.
[38] Mack, J.; Bolton, J. R. J. Photochem. Photobiol. A 1999, 128, 1-13.
[39] Zafiriou, O. C.; Bonneau, R. Photochem. Photobiol. 1987, 45, 723-727.
[40] Logager, T.; Sehested, K. J. Phys. Chem. 1993, 97, 6664-6669.
[41] Barker, G. C.; Fowles, P.; Stringer, B. Trans. Faraday Soc. 1970, 66, 1509-1519.
[42] Seddon, W. A.; Fletcher, J. W.; Sopchyshyn, F. C. Can. J. Chem. 1973, 51, 1123-1130.
[43] Gonzalez, M. C.; Braun, A. M. Res. Chem. Intermed. 1995, 21, 837-859.
[44] Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E. J. J. Phys. Chem. 1984, 88, 4144-4147.
[45] Kläning, U. K.; Sehested, K.; Holcman, J. J. Phys. Chem. 1985, 89, 760-763.
[46] Herrmann, H.; Hoffmann, D.; Schaefer, T.; Braüer, P.; Tilgner, A. ChemPhysChem 2010, 11, 3796–3822.
[47] Crutzen, P. J. Ann. Rev. Earth Planet. Sci. 1979, 7, 443-472.
[48] Moonen, P. C.; Cape, J. N.; Storeton-West, R. L.; Mccolm, R. J. Atmos. Chem. 1998, 29, 299-314.
[49] Goldstein, S.; Czapski, G. J. Am. Chem. Soc. 1995, 117, 12078-12084.
[50] Chiancone, E.; Gibson, Q. H. J. Biol. Chem. 1989, 264, 21062-21065.
[51] Czapski, G.; Holcman, J.; Bielski, B. H. J. J. Am. Chem. Soc. 1994, 116, 11465-11469.
[52] Jacob, D. J.; Field, B. D.; Li, Q.; Blake, D. R.; de Gouw, J.; Warneke, C.; Hansel, A.; Wisthaler, A.; Singh, H. B.; Guenther, A. J. Geophys. Res. 2005, 110, D08303.
[53] Naik, V.; Fiore, A. M.; Horowitz, L. W.; Singh, H. B.; Wiedinmyer, C.; Guenther, A.; de Gouw, J. A.; Millet, D. B.; Goldan, P. D.; Kuster, W. C.; Goldstein, A. Atmos. Chem. Phys. 2010, 10, 5361–5370.
[54] Graham, L. A.; Belisle, S. L.; Baas, C.-L. Atmos. Environ. 2008, 42, 4498–4516.
[55] Felix, J. D.; Roebuck, J. A.; Mead, R. N.; Willey, J. D.; Avery, G. B.; Kieber, R. J. Atmos. Environ. 2019, 217, 116948.
[56] Singh, H.; Chen, Y.; Staudt, A.; Jacob, D.; Blake, D.; Heikes, B.; Snow, J. Nature 2001, 410, 1078-1081.
[57] Motohashi, N.; Saito, Y. Chem. Pharm. Bull. 1993, 41, 1842–1845.
[58] Wolfenden, B. S.; Willson, R. L.; J. Chem. Soc. Perkin Trans. 2 1982, 805–812.
[59] Ito, O.; Akiho, S.; Iino, M. Bull. Chem. Soc. Jpn. 1989, 62, 1606–1611.
[60] Merényi, G.; Lind, J. J. Am. Chem. Soc. 1994, 116, 7872–7876.
第二章
[1] Bernath, P. F. Encyclopedia of Analytical Science, 2nd.: Fourier Transform Techniques, 2005 Elsevier B.V..
[2] Wartewig, S. IR and Raman Spectroscopy: Fundamental Processing, 2005 Wiley.
[3] Kauppinen, J.; Partanen, J. Fourier Transform in Spectroscopy, 2011 Wiley.
[4] Griffiths, P. R.; Haseth, J. A. Fourier Transform Infrared Spectroscopy, 2nd., 2007 Wiley.
[5] Fellgett, P. B. J. Phys. Radium 1958, 19, 187-191.
[6] Jacquinot, P. Rep. Progr. Phys. 1960, 23, 267-312.
[7] Connes, J.; Connes, P. J. Opt. Soc. Am. 1966, 56, 896-910.
[8] Chu, L.-K.; Lee, Y.-P. Instruments Today 2009, 31, 27-35.
[9] Mertz, L. Transformations in Optics, 1965 Wiley.
[10] Mertz, L. Infrared Phys. 1967, 7, 17-23.
[11] Jiang, E. Y. Advanced FT-IR Spectroscopy, 2003 Thermo Electron Corporation.
[12] Uhmann, W.; Becker, A.; Taran, C.; Siebert, F. Appl. Spectrosc. 1991, 45, 390-397.
[13] Geerts, Y.; Steyaert, M.; Sansen, W. M. C. Design of Multi-Bit Delta-Sigma A/D Converters, 2002 Springer Science & Business Media.
[14] USB4000 Optical Bench Options (accessed on 2019/03/01)
https://oceanoptics.com/product-details/usb4000-optical-bench-options/.
第三章
[1] Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian, Inc., Wallingford CT, 2016.
[2] Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
[3] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
[4] Dunning, Jr., T. H. J. Chem. Phys. 1989, 90, 1007-1023.
[5] Woon, D. E.; Dunning, Jr., T. H. J. Chem. Phys. 1993, 98, 1358-1371.
[6] Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669-681.
[7] Sun, Z.; Liu, Y. D.; Lv, C. L.; Zhong, R. G. J. Mol. Struc. THEOCHEM 2009, 908, 107–113.
第四章
[1] Bürgi, T. Biointerface Characterization by Advanced IR Spectroscopy, pp. 115-144, 2011 Elsevier B.V..
[2] Strickler, S. J.; Kasha, M. J. Am. Chem. Soc. 1963, 85, 2899-2901.
[3] Maréchal, Y. J. Chem. Phys. 1991, 95, 5565-5573.
[4] Bilski, P.; Chignell, C. F.; Szychlinski, J.; Borkowski, A.; Oleksy, E.; Reszka, K. J. Am. Chem. Soc. 1992, 114, 549-556.
[5] Chu, L.; Anastasio, C. Environ. Sci. Technol. 2007, 41, 3626-3632.
[6] Saier, E. L.; Pozefsky, A. Anal. Chem. 1954, 26, 1079-1080.
[7] Treinin, A.; Hayon, E. J. Am. Chem. Soc. 1970, 92, 5821-5828.
[8] Logdager, T.; Sehested, K. J. Phys. Chem. 1993, 97, 10047-10052.
[9] Barker, G. C.; Fowles, P.; Stringer, B. Trans. Faraday Soc. 1970, 66, 1509-1519.
[10] Georges, R.; Lievin, J.; Herman, M.; Perrin, A. Chem. Phys. Lett. 1996, 256, 675-678.
[11] Lee, C.-I; Lee, Y.-P.; Wang, X.; Qin, Q.-Z. J. Chem. Phys. 1998, 109, 10446-10455.
[12] Koch, T. G.; Sodeau, J. R. J. Chem. Soc., Faraday Trans. 1996, 92, 2347-2351.
[13] Beckers, H.; Zeng, X.; Willner, H. Chem. Eur. J. 2010, 16, 1506-1520.
[14] Fateley, W. G.; Bent, H. A.; Crawford, B., Jr. J. Chem. Phys. 1959, 31, 204-217.
[15] Fischer, M; Warneck, P. J. Phys. Chem. 1996, 100, 18749-18756.
[16] Gonzalez, M. C.; Braun, A. M. Res. Chem. Intermed. 1995, 21, 837-859.
[17] Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 513-886.
[18] Motohashi, N.; Saito, Y. Chem. Pharm. Bull. 1993, 41, 1842–1845.
[19] Wolfenden, B. S.; Willson, R. L. J. Chem. Soc., Perkin Trans. 2 1982, 805-812.





 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 四胺基大環金屬錯合物於水溶液中反應動力學及機構之探討
2. 界面活性劑對紫膜及細菌視紫質結構的影響
3. 在不同pH值下細菌視紫質光迴圈反應M態生成量子產率的激發波長相依性
4. 細菌視紫質受脈衝光源誘發之光電流動力學與環境pH值相依性
5. 嗜鹽古細菌H. marismortui之雙細菌視紫質系統的光化學反應-HmbRI與HmbRII
6. 以時間解析紅外差異吸收光譜法結合數學的相關性分析方法研究細菌視紫質光迴圈的質子傳遞過程與結構變化
7. 利用色胺酸作為螢光溫度計 定量金奈米粒子之光熱轉換效率
8. 藉由瞬態事件組合法擬合穩態現象並應用於細菌視紫質之光誘發質子幫浦反應
9. I. 奈米碟中脂質對細菌視紫質光迴圈動力學之調制 II. 截斷格點法對於量子波包動力學之應用
10. I. Xanthorhodopsin於可見光區的光迴圈效率與波長之相依性研究 II. 從動力學與熱力學觀點探討紫膜中細菌視紫質暗適應過程之溶劑同位素效應
11. 以步進式掃描傅氏轉換光譜儀 研究光激發金奈米粒子之瞬態紅外放光
12. 利用具空間及時間解析能力的螢光溫度計偵測金奈米棒溶液之光熱過程
13. 以二氧化矽包覆之金奈米棒光熱轉換作為溫度躍升法搭配共軛焦螢光系統研究牛血清白蛋白之去摺疊過程
14. 以步進式掃描時間解析傅立葉轉換紅外光譜術偵測苯基陸森紅酯(Roussin’s red benzyl ester) 在不同溶劑環境中之光解反應
15. 以聚脯胺酸調控色胺酸與金奈米粒子之距離探討螢光淬熄效應
 
* *