|
1. Kar, K.; Ibrar, S.; Nanda, V.; Getz, T. M.; Kunapuli, S. P.; Brodsky, B., Aromatic Interactions Promote Self-Association of Collagen Triple-Helical Peptides to Higher-Order Structures. Biochemistry 2009, 48, 7959-7968. 2. Cowan, P. M.; McGavin, S.; North, A. C. T., The Polypeptide Chain Configuration of Collagen. Nature 1955, 176, 1062-1064. 3. Rich, A.; Crick, F. H. C., The Structure of Collagen. Nature 1955, 176, 915-916. 4. Rich, A.; Crick, F. H., The Molecular Structure of Collagen. J. Mol. Biol. 1961, 3, 483-506. 5. Bella, J.; Brodsky, B.; Berman, H. M., Hydration Structure of a Collagen Peptide. Structure 1995, 3, 893-906. 6. Bella, J.; Eaton, M.; Brodsky, B.; Berman, H. M., Crystal and Molecular Structure of a Collagen-Like Peptide at 1.9 Å Resolution. Science 1994, 266, 75-81. 7. Hinderaker, M. P.; Raines, R. T., An Electronic Effect on Protein Structure. Protein Sci. 2003, 12, 1188-1194. 8. Privalov, P. L., Stability of Proteins. Proteins Which Do Not Present a Single Cooperative System. Adv. Protein Chem. 1982, 35, 1-104. 9. Brodsky, B.; Ramshaw, J. A., The Collagen Triple-Helix Structure. Matrix Biol. 1997, 15, 545-554. 10. Sakakibara, S.; Inouye, K.; Shudo, K.; Kishida, Y.; Kobayashi, Y.; Prockop, D. J., Synthesis of (Pro-Hyp-Gly)n of Defined Molecular Weights Evidence for the Stabilization of Collagen Triple Helix by Hydroxypyroline. Biochim. Biophys. Acta 1973, 303, 198-202. 11. Shoulders, M. D.; Raines, R. T., Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929-958. 12. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Amino Acid Propensities for the Collagen Triple-Helix. Biochemistry 2000, 39, 14960-14967. 13. Whitesides, G. M.; Boncheva, M., Beyond Molecules: Self-Assembly of Mesoscopic and Macroscopic Components. Proc. Nat. Acad. Sci. U.S.A. 2002, 99, 4769. 14. Selkoe, D. J., Cell Biology of Protein Misfolding: The Examples of Alzheimer's and Parkinson's Diseases. Nat. Cell Biol. 2004, 6, 1054-1061. 15. Stefani, M.; Dobson, C. M., Protein Aggregation and Aggregate Toxicity: New Insights into Protein Folding, Misfolding Diseases and Biological Evolution. J. Mol. Med. 2003, 81, 678-699. 16. Bruice, T. C.; Schmir, G. L., Imidazole Catalysis. I. The Catalysis of the Hydrolysis of Phenyl Acetates by Imidazole. J. Am. Chem. Soc. 1957, 79, 1663-1667. 17. Jencks Wp Fau - Carriuolo, J.; Carriuolo, J., Imidazole Catalysis. II. Acyl Transfer and the Reactions of Acetyl Imidazole with Water and Oxygen Anions. J. Biol. Chem. 1959, 234, 1272–1279. 18. Bezer, S.; Matsumoto, M.; Lodewyk, M. W.; Lee, S. J.; Tantillo, D. J.; Gagné, M. R.; Waters, M. L., Identification and Optimization of Short Helical Peptides with Novel Reactive Functionality as Catalysts for Acyl Transfer by Reactive Tagging. Org. Biomol. Chem. 2014, 12, 1488-1494. 19. Matsumoto, M.; Lee, S. J.; Waters, M. L.; Gagné, M. R., A Catalyst Selection Protocol That Identifies Biomimetic Motifs from Β-Hairpin Libraries. J. Am. Chem. Soc. 2014, 136, 15817-15820. 20. Burton, A. J.; Thomson, A. R.; Dawson, W. M.; Brady, R. L.; Woolfson, D. N., Installing Hydrolytic Activity into a Completely De Novo Protein Framework. Nat. Chem. 2016, 8, 837-844. 21. Wang, P. S. P.; Nguyen, J. B.; Schepartz, A., Design and High-Resolution Structure of a β3-Peptide Bundle Catalyst. J. Am. Chem. Soc. 2014, 136, 6810-6813. 22. Gulseren, G.; Khalily, M. A.; Tekinay, A. B.; Guler, M. O., Catalytic Supramolecular Self-Assembled Peptide Nanostructures for Ester Hydrolysis. J. Mater. Chem. 2016, 4, 4605-4611. 23. Rufo, C. M.; Moroz, Y. S.; Moroz, O. V.; Stöhr, J.; Smith, T. A.; Hu, X.; DeGrado, W. F.; Korendovych, I. V., Short Peptides Self-Assemble to Produce Catalytic Amyloids. Nat. Chem. 2014, 6, 303-309. 24. Al-Garawi, Z. S.; McIntosh, B. A.; Neill-Hall, D.; Hatimy, A. A.; Sweet, S. M.; Bagley, M. C.; Serpell, L. C., The Amyloid Architecture Provides a Scaffold for Enzyme-Like Catalysts. Nanoscale 2017, 9, 10773-10783. 25. Stickle, D. F.; Presta, L. G.; Dill, K. A.; Rose, G. D., Hydrogen Bonding in Globular Proteins. J. Mol. Biol. 1992, 226, 1143-1159. 26. Privalov, P. L.; Gill, S. J., Stability of Protein Structure and Hydrophobic Interaction. Adv. Protein Chem. 1988, 39, 191-234. 27. Burley, S. K.; Petsko, G. A., Amino-Aromatic Interactions in Proteins. FEBS Lett. 1986, 203, 139-143. 28. Betz, S. F., Disulfide Bonds and the Stability of Globular Proteins. Protein Sci. 1993, 2, 1551-1558. 29. Beeby, M.; O'Connor, B. D.; Ryttersgaard, C.; Boutz, D. R.; Perry, L. J.; Yeates, T. O., The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles. PLOS Biology 2005, 3, e309. 30. Rigobello, M. P.; Donella-Deana, A.; Cesaro, L.; Bindoli, A., Distribution of Protein Disulphide Isomerase in Rat Liver Mitochondria. Biochem. J 2001, 356, 567-570. 31. Starman, B. J.; Eyre D Fau - Charbonneau, H.; Charbonneau H Fau - Harrylock, M.; Harrylock M Fau - Weis, M. A.; Weis Ma Fau - Weiss, L.; Weiss L Fau - Graham, J. M., Jr.; Graham Jm Jr Fau - Byers, P. H.; Byers, P. H., Osteogenesis Imperfecta. The Position of Substitution for Glycine by Cysteine in the Triple Helical Domain of the Pro Alpha 1(I) Chains of Type I Collagen Determines the Clinical Phenotype. J. Clin. Invest. 1989, 84, 1206–1214. 32. Gajko-Galicka, A., Mutations in Type I Collagen Genes Resulting in Osteogenesis Imperfecta in Humans. Acta Biochim. Pol. 2002, 49, 433-441. 33. Shapiro, J. R.; Stover, M. L.; Burn, V. E.; McKinstry, M. B.; Burshell, A. L.; Chipman, S. D.; Rowe, D. W., An Osteopenic Nonfracture Syndrome with Features of Mild Osteogenesis Imperfecta Associated with the Substitution of a Cysteine for Glycine at Triple Helix Position 43 in the Pro Alpha 1(I) Chain of Type I Collagen. J. Clin. Invest. 1992, 89, 567-573. 34. Narcisi, P.; J.Richards, A.; Ferguson, S. D.; Pope, F. M., A Family with Ehlers — Danlos Syndrome Type III/Articular Hypermobility Syndrome Has a Glycine 637 to Serine Substitution in Type III Collagen. Hum. Mol. Genet. 1994, 3, 1617-1620. 35. Prockop, D. J.; Kivirikko, K. I., Collagens: Molecular Biology, Diseases, and Potentials for Therapy. Annu. Rev. Biochem. 1995, 64, 403-434. 36. Hung, P.-Y.; Chen, Y.-H.; Huang, K.-Y.; Yu, C.-C.; Horng, J.-C., Design of Polyproline-Based Catalysts for Ester Hydrolysis. ACS Omega 2017, 2, 5574-5581. 37. Ting, Y.-H.; Chen, H.-J.; Cheng, W.-J.; Horng, J.-C., Zinc(II)–Histidine Induced Collagen Peptide Assemblies: Morphology Modulation and Hydrolytic Catalysis Evaluation. Biomacromolecules 2018, 19, 2629-2637. 38. 張彤瑋. 膠原蛋白模擬胜肽與其自組裝結構對酯類水解反應的催化效率探討. 國立清華大學, 新竹市, 2019. 39. Yamagami, M.; Sawada, T. A.-O.; Fujita, M. A.-O., Synthetic β-Barrel by Metal-Induced Folding and Assembly. J. Am. Chem. Soc. 2018, 140, 8644–8647. 40. Merrifield, B., Solid Phase Synthesis. Science 1986, 232, 341-347. 41. Berova, N.; Nakanishi, K.; Woody, R., Circular Dichroism. Principles and Applications 2nd Edition. 2000. 42. Greenfield, N., Using Circular Dichroism Collected as a Function of Temperature to Determine the Thermodynamics of Protein Unfolding and Binding Interactions. Nat. Protoc. 2006, 1, 2527-2535. 43. Sundberg, R. J.; Martin, R. B., Interactions of Histidine and Other Imidazole Derivatives with Transition Metal Ions in Chemical and Biological Systems. Chem. Rev. 1974, 74, 471-517. 44. Krężel, A.; Maret, W., The Biological Inorganic Chemistry of Zinc Ions. Arch. Biochem. Biophys. 2016, 611, 3-19. 45. Zastrow, M. L.; Pecoraro, V. L., Influence of Active Site Location on Catalytic Activity in De Novo-Designed Zinc Metalloenzymes. J. Am. Chem. Soc. 2013, 135, 5895-5903.
|