帳號:guest(18.119.167.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐琬祺
作者(外文):Hsu, Wan-Chi
論文名稱(中文):勻相水氧化分子催化劑:永續能源的未來
論文名稱(外文):Molecular Catalysts for Homogeneous Water Oxidation: A Sustainable Energy Future
指導教授(中文):王育恒
指導教授(外文):Wang, Yu-Heng
口試委員(中文):江明錫
蔡易州
劉學儒
口試委員(外文):Chiang, Ming-Hsi
Tsai, Yi-Chou
Liu, Hsueh-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:107023501
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:251
中文關鍵詞:分子電催化劑均相水氧化電化學過電位線性自由能關係
外文關鍵詞:electrochemistryhomogeneous water oxidationlinear free energy relationship (LFER)molecular electrocatalystoverpotential
相關次數:
  • 推薦推薦:0
  • 點閱點閱:202
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
一個世紀多以來,主要以燃燒化石燃料來使用存儲在化學鍵中的能量。水分解―被分解成質子和氧氣―而在人工光合裝置中,質子和氧氣可以重新組合使用,被視為解決儲能問題的一種方案。質子和電子都是從水的氧化中釋放出來,代表可以有效地從豐富的來源中產生電能和化學能。然而,開發高效的水氧化催化劑 (WOC) 仍然是能量轉換中的一項重大挑戰,因水氧化反應的緩慢動力學限制了其實際應用。稀有過渡金屬催化劑是目前高效水氧化的最佳候選材料。然而,因為第一行過渡金屬含量高且成本低,研究人員正探索以第一行過渡金屬作為水氧化催化劑。本論文詳細闡述雙分子鈷錯合物作為水氧化電催化劑在轉換頻率(TOF)、過電位(η)和機制上的研究。
本論文的第二章著重於系統性的比較文獻中以第一行過渡金屬錯合物作為均相水氧化催化劑,基於不同催化條件下,探究轉換頻率的對數 (log(TOF)) 與過電位之間的自由能關係。研究Mn-、Fe-、Co-、Ni-和Cu-WOCs具有不同類型的配位基對於TOF和η的影響。此外,也探討了相同配位基對於不同金屬水氧化催化劑在轉換頻率和過電位的影響,反之亦然。這些自由能關係的綜合性分析對直接比較不同催化劑的系統以及催化劑的設計提供了至關重要的因素。
本論文的第三章描述具有bisbenzimidazolepyrazolide配位基(H2L和Me2L)的雙分子鈷錯合物(1和2)催化均相水氧化反應。在鹼性條件下,1帶有非無辜的配位基(H2L)表現出比2更快的催化速率,從動力學和電化學的實驗顯示1和2以不同的機制進行水氧化催化反應。結合光譜證據和理論計算,機制細節表示H2L充當氧化還原接受者/提供者。此外,藉由log(TOF)和過電位圖,1表現出比文獻中的雙核Ru-WOCs更顯著的速率,可以在相似的過電位下達到更快的催化效果。所得的結果強調,藉由摻入具有氧化還原非無辜的配位基是設計有效的金屬水氧化劑的解方。
總體而言,本論文描述了利用雙分子鈷錯合物水氧化催化劑實現具有更高效率的水氧化反應(4e−/4H+)。在均相條件下,利用不同的反應條件調節過電位,進而提高催化效率。實驗數據和理論計算研究為催化速率和過電位之間的相關性提供一個合理的解釋。

For more than a century, energy retrieval stored in chemical bonds has been carried out primarily by combusting fossil fuels. Water splitting, which is split into protons and oxygen that can be recombined at the point of use in an artificial photosynthetic cell, represents one solution to the energy storage problem. Both protons and electrons are liberated from water oxidation, which can effectively generate electrical and chemical energies from an abundant source. However, achieving an efficient water oxidation catalyst (WOC) remains a significant challenge in energy conversion, where the sluggish kinetics of the water oxidation reaction has also restricted its practical application. Rare transition metal catalysts are currently the better-performing candidates for efficient oxidation of H2O. However, researchers are exploring first-row transition metal WOCs, due to their high abundance and low cost. This thesis details the comprehensive investigation of the turnover frequency (TOF), overpotential (η), and mechanistic studies of homogeneous H2O oxidation to O2 catalyzed by dinuclear cobalt complexes.
Chapter 2 of this thesis highlights the free-energy relationships between the logarithm of the turnover frequency (log(TOF)) and the overpotential reported under diverse conditions for a systematic comparison of first-row transition metal complexes as homogeneous WOCs. Mn-, Fe-, Co-, Ni-, and Cu-based WOCs are investigated the dependence of their log(TOF)/η relationships with different types of ligands. Moreover, the effects of the same ligand classes on these molecular WOCs regarding TOF and η, and vice versa, are discussed to provide insights into their efficiencies. The collective analysis of these relationships provides a benchmark for the direct comparison of catalyst systems and identifying factors crucial for catalyst design.
Chapter 3 of this thesis depicts the homogeneous 4e−/4H+ H2O oxidation catalyzed by dinuclear cobalt complexes (1 and 2) bearing bisbenzimidazolepyrazolide-type ligands (H2L and Me2L). Mainly, 1 bearing a non-innocent ligand (H2L) displays faster catalytic turnover than 2 under alkaline conditions, and the kinetic and electrochemical studies indicate that the reaction mediated by 1 proceeds a different mechanism relative to 2. Combined with spectroscopic evidence and computational studies, mechanistic details demonstrate that H2L acts as a redox relay. Furthermore, based on a plot of log(TOF) and η, 1 exhibits a significantly higher rate than previously reported dinuclear Ru-based WOCs at comparable η. The present results highlight that incorporating redox non-innocent ligands is a valuable strategy for designing effective metal-based molecular WOCs.
Overall, this thesis delineates the opportunities for utilizing molecular cobalt catalysts for achieving 4e−/4H+ oxidation of H2O with higher activity. The overpotential can be tuned using different reaction media under homogeneous conditions, and this feature serves as the basis for improving efficiency.
Abstract i
摘要 iii
Acknowledgements v
謝誌 vi
Table of Contents vii
List of Figures x
List of Schemes xviii
List of Charts xviii
List of Tables xix
Abbreviations and Acronyms xxi
Chapter 1. Water Oxidation Reaction: Introduction and Background 1
1.1. Natural Photosynthetic Water Oxidation 2
1.2. Artificial Photosynthesis (AP) 4
1.3. Challenges to Water Oxidation Reaction 5
1.4. Homogeneous Dinuclear Cobalt Complexes as WOCs 7
1.5. Unsolved Problems for H2O Oxidation Catalyzed with Dinuclear Cobalt Complexes 8
1.6. Thesis Scope 11
1.7. References 11
Chapter 2. Homogeneous Water Oxidation Catalyzed by First-Row Transition Metal Complexes: Unveiling the Relationship between Turnover Frequency and Reaction Overpotential 15
2.1. Abstract 16
2.2. Introduction 17
2.3. Definitions and Metrics for Homogeneous Water Oxidation 19
2.3.1. Definition of TOF 19
2.3.2. TOF calculation for homogeneous water oxidation 20
2.3.3. Definition of η 21
2.3.4. Calculation of η for homogeneous water oxidation 22
2.3.5. Molecular WOCs: homogeneous and heterogeneous approaches 23
2.3.6. Evaluation of MWOCs using log(TOF)-η relationship 25
2.3.7. Important considerations for MWOC benchmarking 26
2.4. Homogeneous Water Oxidation Catalyzed by First-Row Transition Metal Complexes 27
2.4.1. First-row transition metal complexes: Mn 27
2.4.2. First-row transition metal complexes: Fe 31
2.4.3. First-row transition metal complexes: Co 37
2.4.4. First-row transition metal complexes: Ni 43
2.4.5. First-row transition metal complexes: Cu 48
2.5. Crossover Comparison of Catalyst Performance 55
2.5.1. Same metal-based WOCs with ligands of different classes 55
2.5.2. Different metal-based WOCs with same-class ligands 57
2.5.3. Other factors possibly affecting catalytic performance 59
2.6. Summary and Outlook 60
2.7. Acknowledgements 62
2.8. Author Contributions 62
2.9. References 62
Chapter 3. Dinuclear Cobalt Complexes for Homogeneous Water Oxidation: Tuning Rate and Overpotential Through the Redox Non-Innocent Ligand 79
3.1. Abstract 80
3.2. Introduction 81
3.3. Results and Discussion 84
3.3.1. Synthesis and characterization of dinuclear Co complexes 1 and 2 84
3.3.2. Electrocatalytic and stability studies 85
3.3.3. Kinetic analysis and redox non-innocence of 1 under alkaline conditions 88
3.3.4. Analysis of the reaction intermediates and catalyst resting state 92
3.3.5. Proposed catalytic cycle 94
3.3.6. Influence of the redox non-innocent ligand: log(TOFmax)–η analysis and catalytic Tafel plot 97
3.4. Conclusions 102
3.5. Acknowledgements 103
3.6. Author Contributions 103
3.7. References 104
Supp Info Chapter 3. 110
I. General Experimental Considerations 110
II. Synthesis of Ligands and Co Complexes 110
III. UV-Vis Spectral Measurements 113
IV. Electrochemical Experiments 116
V. Evidence for a Homogeneous Electrocatalyst 119
VI. Controlled Potential Electrolysis (CPE) Experiments 123
VII. Rate Law Analysis of H2O Oxidation Catalyzed by Co complexes 129
VIII. Kinetic Isotope Effects (KIE) 132
IX. TOF Calculation from Cyclic Voltametric Measurements 134
X. Estimation of the Thermodynamic Reduction Potential of O2/H2O at Non-standard State 138
XI. TOFs and η of Previous H2O Oxidation Studies 141
XII. Spectroelectrochemical Study 142
XIII. Cold-spray ionization mass spectrometry (CSI-MS) 145
XIV. Computational Study 145
XV. Compound Spectra 178
XVI. Crystallographic Data 196
XVII.References 228
Appendix 1. Appendix to Chapter 3 231
A1.1. General Experimental Considerations 232
A1.2. Synthesis of Oxidants 232
A1.3. Rate Law Analysis of H2O Oxidation Catalyzed by Co Complexes 233
A1.4. η of WO Catalyzed by Co Complexes 236
A1.5. Eyring Analysis 237
A1.6. Compound Spectra 241
A1.7. Crystallographic Data 247
A1.8. References 251
Chapter 1
(1) J. P. McEvoy, G. W. Brudvig, Chem. Rev. 2006, 106, 4455-4483.
(2) R. Croce, H. van Amerongen, Nat. Chem. Biol. 2014, 10, 492-501.
(3) M. J. Xuan, J. B. Li, Natl. Sci. Rev. 2021, 8, nwab051.
(4) S. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501-7519.
(5) Y. Umena, K. Kawakami, J. R. Shen, N. Kamiya, Nature 2011, 473, 55-60.
(6) G. Renger, J. Photochem. Photobiol. B: Biol. 2011, 104, 35-43.
(7) N. Cox, D. A. Pantazis, F. Neese, W. Lubitz, Acc. Chem. Res. 2013, 46, 1588-1596.
(8) D. J. Vinyard, G. M. Ananyev, G. C. Dismukes, Annu. Rev. Biochem. 2013, 82, 577-606.
(9) J. Barber, Chem. Soc. Rev. 2009, 38, 185-196.
(10) D. G. Nocera, Acc. Chem. Res. 2012, 45, 767-776.
(11) J. Li, R. Guttinger, R. More, F. Song, W. Wan, G. R. Patzke, Chem. Soc. Rev. 2017, 46, 6124-6147.
(12) Y. Wang, H. Suzuki, J. Xie, O. Tomita, D. J. Martin, M. Higashi, D. Kong, R. Abe, J. Tang, Chem. Rev. 2018, 118, 5201-5241.
(13) J. J. Concepcion, R. L. House, J. M. Papanikolas, T. J. Meyer, Proc. Natl. Acad. Sci. USA 2012, 109, 15560-15564.
(14) A. Mezzetti, W. Leibl, Photosynth. Res. 2017, 131, 121-144.
(15) V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Angew. Chem. Int. Ed. 2011, 50, 7238-7266.
(16) B. Zhang, L. Sun, Chem. Soc. Rev. 2019, 48, 2216-2264.
(17) B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. B. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. L. Wang, E. Miller, T. F. Jaramillo, Energy Environ. Sci. 2013, 6, 1983-2002.
(18) M. R. Shaner, H. A. Atwater, N. S. Lewis, E. W. McFarland, Energy Environ. Sci. 2016, 9, 2354-2371.
(19) X. T. Xu, L. Pan, X. W. Zhang, L. Wang, J. J. Zou, Adv. Sci. 2019, 6, 1801505.
(20) B. M. Hunter, H. B. Gray, A. M. Muller, Chem. Rev. 2016, 116, 14120-14136.
(21) M. V. Sheridan, B. D. Sherman, Y. Xie, Y. Wang, Sol. RRL 2021, 5, 2000565.
(22) J. Li, C. A. Triana, W. Wan, D. P. Adiyeri Saseendran, Y. Zhao, S. E. Balaghi, S. Heidari, G. R. Patzke, Chem. Soc. Rev. 2021, 50, 2444-2485.
(23) R. Matheu, P. Garrido-Barros, M. Gil-Sepulcre, M. Z. Ertem, X. Sala, C. Gimbert-Suriñach, A. Llobet, Nat. Rev. Chem. 2019, 3, 331-341.
(24) M. Kondo, H. Tatewaki, S. Masaoka, Chem. Soc. Rev. 2021, 50, 6790-6831.
(25) N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337-365.
(26) S. W. Gersten, G. J. Samuels, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 4029-4030.
(27) I. Corbucci, A. Macchioni, M. Albrecht, in Iridium(III) in Optoelectronic and Photonics Applications, 2017, pp. 617-654.
(28) J. M. Kamdar, D. B. Grotjahn, Molecules 2019, 24, 494.
(29) Y. P. Liu, X. Liang, H. Chen, R. Q. Gao, L. Shi, L. Yang, X. X. Zou, Chin. J. Catal. 2021, 42, 1054-1077.
(30) Z. Codolá, J. Lloret-Fillol, M. Costas, in Non‐Noble Metal Catalysis, John Wiley and Sons, 2019, pp. 425-451.
(31) X. J. Wu, F. Li, B. B. Zhang, L. C. Sun, J. Photochem. Photobiol. C 2015, 25, 71-89.
(32) H. Y. Wang, E. Mijangos, S. Ott, A. Thapper, Angew. Chem. Int. Ed. 2014, 53, 14499-14502.
(33)A. M. Ullman, Y. Liu, M. Huynh, D. K. Bediako, H. Wang, B. L. Anderson, D. C. Powers, J. J. Breen, H. D. Abruna, D. G. Nocera, J. Am. Chem. Soc. 2014, 136, 17681-17688.
(34) J.-W. Wang, P. Sahoo, T.-B. Lu, ACS Catal. 2016, 6, 5062-5068.
(35) M. L. Rigsby, S. Mandal, W. Nam, L. C. Spencer, A. Llobet, S. S. Stahl, Chem. Sci. 2012, 3, 3058-3062.
(36) M. Chen, S. M. Ng, S. M. Yiu, K. C. Lau, R. J. Zeng, T. C. Lau, Chem. Commun. 2014, 50, 14956-14959.
(37) T. C. Davenport, H. S. Ahn, M. S. Ziegler, T. D. Tilley, Chem. Commun. 2014, 50, 6326-6329.
(38) T. Ishizuka, A. Watanabe, H. Kotani, D. Hong, K. Satonaka, T. Wada, Y. Shiota, K. Yoshizawa, K. Ohara, K. Yamaguchi, S. Kato, S. Fukuzumi, T. Kojima, Inorg. Chem. 2016, 55, 1154-1164.
(39) T. Nakazono, T. Wada, Inorg. Chem. 2021, 60, 1284-1288.
(40) A. Badruzzaman, A. Yuda, A. Ashok, A. Kumar, Inorg. Chim. Acta. 2020, 511, 119854.
(41) A. M. Appel, M. L. Helm, ACS Catal. 2014, 4, 630-633.
(42) E. S. Rountree, B. D. McCarthy, T. T. Eisenhart, J. L. Dempsey, Inorg. Chem. 2014, 53, 9983-10002.
(43) M. L. Pegis, B. A. McKeown, N. Kumar, K. Lang, D. J. Wasylenko, X. P. Zhang, S. Raugei, J. M. Mayer, ACS Cent. Sci. 2016, 2, 850-856.

Chapter 2
(1) T. J. Meyer, Acc. Chem. Res. 1989, 22, 163-170.
(2) A. J. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141-145.
(3) J. Chow, R. J. Kopp, P. R. Portney, Science 2003, 302, 1528-1531.
(4) N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.
(5) H. B. Gray, Nat. Chem. 2009, 1, 7.
(6) R. Schlögl, Top. Catal. 2016, 59, 772-786.
(7) B. Zhang, L. Sun, Chem. Soc. Rev. 2019, 48, 2216-2264.
(8) X. Liu, S. Inagaki, J. Gong, Angew. Chem. Int. Ed. 2016, 55, 14924-14950; Angew. Chem. 2016, 128, 15146-15174.
(9) Y. Wang, H. Suzuki, J. Xie, O. Tomita, D. J. Martin, M. Higashi, D. Kong, R. Abe, J. Tang, Chem. Rev. 2018, 118, 5201-5241.
(10) B. M. Hunter, H. B. Gray, A. M. Muller, Chem. Rev. 2016, 116, 14120-14136.
(11) L. Han, S. Dong, E. Wang, Adv. Mater. 2016, 28, 9266-9291.
(12) M. V. Sheridan, B. D. Sherman, Y. Xie, Y. Wang, Solar RRL 2021, 5, 2000565.
(13) J. Li, C. A. Triana, W. Wan, D. P. Adiyeri Saseendran, Y. Zhao, S. E. Balaghi, S. Heidari, G. R. Patzke, Chem. Soc. Rev. 2021, 50, 2444-2485.
(14) L. D. Wickramasinghe, R. Zhou, R. Zong, P. Vo, K. J. Gagnon, R. P. Thummel, J. Am. Chem. Soc. 2015, 137, 13260-13263.
(15) Z.-Q. Wang, Z.-C. Wang, S. Zhan, J.-S. Ye, Appl. Catal. A 2015, 490, 128-132.
(16) B. Das, A. Orthaber, S. Ott, A. Thapper, ChemSusChem 2016, 9, 1178-1186.
(17) S. M. Al-Zuraiji, T. Benkó, L. Illés, M. Németh, K. Frey, A. Sulyok, J. S. Pap, J. Catal. 2020, 381, 615-625.
(18) M. M. Najafpour, A. N. Moghaddam, D. J. Sedigh, M. Hołyńska, Catal. Sci. Technol. 2014, 4, 30-33.
(19) Y. Liu, R. Xiang, X. Du, Y. Ding, B. Ma, Chem. Commun. 2014, 50, 12779-12782.
(20) A. R. Parent, T. Nakazono, S. Lin, S. Utsunomiya, K. Sakai, Dalton Trans. 2014, 43, 12501-12513.
(21) K. G. Kottrup, S. D'Agostini, P. H. van Langevelde, M. A. Siegler, D. G. H. Hetterscheid, ACS Catal. 2018, 8, 1052-1061.
(22) B. Das, B. L. Lee, E. A. Karlsson, T. Akermark, A. Shatskiy, S. Demeshko, R. Z. Liao, T. M. Laine, M. Haukka, E. Zeglio, A. F. Abdel-Magied, P. E. Siegbahn, F. Meyer, M. D. Karkas, E. V. Johnston, E. Nordlander, B. Akermark, Dalton Trans. 2016, 45, 13289-13293.
(23) M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata, S. Masaoka, Nature 2016, 530, 465-468.
(24) M. D. Karkas, O. Verho, E. V. Johnston, B. Akermark, Chem. Rev. 2014, 114, 11863-12001.
(25) I. Corbucci, A. Macchioni, M. Albrecht, in Iridium (III) in Optoelectronic and Photonics Applications, 2017, pp. 617-654.
(26) M. Hirahara, A. Shoji, M. Yagi, Eur. J. Inorg. Chem. 2014, 2014, 595-606.
(27) T. Liu, B. Zhang, L. Sun, Chem. Asian J. 2019, 14, 31-43.
(28) L. H. Zhang, S. Mathew, J. Hessels, J. N. H. Reek, F. Yu, ChemSusChem 2021, 14, 234-250.
(29) H. Lee, X. Wu, L. Sun, Nanoscale 2020, 12, 4187-4218.
(30) S. W. Gersten, G. J. Samuels, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 4029-4030.
(31) L. Wang, L. Duan, Y. Wang, M. S. Ahlquist, L. Sun, Chem. Commun. 2014, 50, 12947-12950.
(32) J. Creus, R. Matheu, I. Penafiel, D. Moonshiram, P. Blondeau, J. Benet-Buchholz, J. Garcia-Anton, X. Sala, C. Godard, A. Llobet, Angew. Chem. Int. Ed. 2016, 55, 15382-15386; Angew. Chem. 2016, 128, 15608-15612.
(33) A. Macchioni, Eur. J. Inorg. Chem. 2019, 2019, 7-17.
(34) N. Vereshchuk, R. Matheu, J. Benet-Buchholz, M. Pipelier, J. Lebreton, D. Dubreuil, A. Tessier, C. Gimbert-Suriñach, M. Z. Ertem, A. Llobet, J. Am. Chem. Soc. 2020, 142, 5068-5077.
(35) M. D. Karkas, B. Akermark, Dalton Trans. 2016, 45, 14421-14461.
(36) M. L. Pegis, B. A. McKeown, N. Kumar, K. Lang, D. J. Wasylenko, X. P. Zhang, S. Raugei, J. M. Mayer, ACS Cent. Sci. 2016, 2, 850-856.
(37) A. J. Cardenas, B. Ginovska, N. Kumar, J. Hou, S. Raugei, M. L. Helm, A. M. Appel, R. M. Bullock, M. O'Hagan, Angew. Chem. Int. Ed. 2016, 55, 13509-13513; Angew. Chem. 2016, 128, 13707-13711.
(38) W. A. Hoffert, J. A. Roberts, R. Morris Bullock, M. L. Helm, Chem. Commun. 2013, 49, 7767-7769.
(39) C. M. Klug, A. J. P. Cardenas, R. M. Bullock, M. O’Hagan, E. S. Wiedner, ACS Catal. 2018, 8, 3286-3296.
(40) I. Azcarate, C. Costentin, M. Robert, J. M. Saveant, J. Am. Chem. Soc. 2016, 138, 16639-16644.
(41) C. Costentin, J.-M. Savéant, Nat. Rev. Chem. 2017, 1, 0087.
(42) P. Gotico, Z. Halime, A. Aukauloo, Dalton Trans. 2020, 49, 2381-2396.
(43) Y.-H. Wang, M. L. Pegis, J. M. Mayer, S. S. Stahl, J. Am. Chem. Soc. 2017, 139, 16458-16461.
(44) M. L. Pegis, C. F. Wise, B. Koronkiewicz, J. M. Mayer, J. Am. Chem. Soc. 2017, 139, 11000-11003.
(45) Y. H. Wang, P. E. Schneider, Z. K. Goldsmith, B. Mondal, S. Hammes-Schiffer, S. S. Stahl, ACS Cent. Sci. 2019, 5, 1024-1034.
(46) Y.-H. Wang, B. Mondal, S. S. Stahl, ACS Catal. 2020, 10, 12031-12039.
(47) D. J. Martin, B. Q. Mercado, J. M. Mayer, Sci. Adv. 2020, 6, eaaz3318.
(48) D. J. Martin, C. F. Wise, M. L. Pegis, J. M. Mayer, Acc. Chem. Res. 2020, 53, 1056-1065.
(49) A. R. Parent, R. H. Crabtree, G. W. Brudvig, Chem. Soc. Rev. 2013, 42, 2247-2252.
(50) S. Anantharaj, P. E. Karthik, S. Noda, Angew. Chem. Int. Ed. 2021, 60, 23051-23067.
(51) S. Fukuzumi, J. Jung, Y. Yamada, T. Kojima, W. Nam, Chem. Asian J. 2016, 11, 1138-1150.
(52) R. Bofill, J. Garcia-Anton, L. Escriche, X. Sala, J. Photochem. Photobiol. B 2015, 152, 71-81.
(53) S. Kozuch, J. M. L. Martin, ACS Catal. 2012, 2, 2787-2794.
(54) C. Costentin, S. Drouet, M. Robert, J. M. Saveant, J. Am. Chem. Soc. 2012, 134, 11235-11242.
(55) J. Hagen, in Industrial Catalysis; Wiley-VCH: Weinheim, 2006, pp. 1-14.
(56) A. Bucci, A. Savini, L. Rocchigiani, C. Zuccaccia, S. Rizzato, A. Albinati, A. Llobet, A. Macchioni, Organometallics 2012, 31, 8071-8074.
(57) J. L. Fillol, Z. Codola, I. Garcia-Bosch, L. Gomez, J. J. Pla, M. Costas, Nat. Chem. 2011, 3, 807-813.
(58) G. Panchbhai, W. M. Singh, B. Das, R. T. Jane, A. Thapper, Eur. J. Inorg. Chem. 2016, 2016, 3262-3268.
(59) E. S. Rountree, B. D. McCarthy, T. T. Eisenhart, J. L. Dempsey, Inorg. Chem. 2014, 53, 9983-10002.
(60) C. Costentin, G. Passard, J. M. Saveant, J. Am. Chem. Soc. 2015, 137, 5461-5467.
(61) L. R. F. Allen J Bard, Electrochemical methods fundamentals and applications, 2nd ed, Wiley Global Education, New York, 2001.
(62) M. L. Pegis, C. F. Wise, D. J. Martin, J. M. Mayer, Chem. Rev. 2018, 118, 2340-2391.
(63) A. M. Appel, M. L. Helm, ACS Catal. 2014, 4, 630-633.
(64) B. M. Stratakes, J. L. Dempsey, A. J. M. Miller, ChemElectroChem 2021, 8, 4161-4180.
(65) C. Costentin, J.-M. Savéant, ChemElectroChem 2014, 1, 1226-1236.
(66) S. Fukuzumi, D. Hong, Eur. J. Inorg. Chem. 2014, 2014, 645-659.
(67) F. Jiao, H. Frei, Angew. Chem. Int. Ed. 2009, 48, 1841-1844; Angew. Chem. 2009, 121, 1873-1876.
(68) F. Jiao, H. Frei, Energy Environ. Sci. 2010, 3, 1018-1027.
(69) Y. Zhao, K. R. Yang, Z. Wang, X. Yan, S. Cao, Y. Ye, Q. Dong, X. Zhang, J. E. Thorne, L. Jin, K. L. Materna, A. Trimpalis, H. Bai, S. C. Fakra, X. Zhong, P. Wang, X. Pan, J. Guo, M. Flytzani-Stephanopoulos, G. W. Brudvig, V. S. Batista, D. Wang, Proc. Natl. Acad. Sci. USA 2018, 115, 2902-2907.
(70) M. L. Rigsby, D. J. Wasylenko, M. L. Pegis, J. M. Mayer, J. Am. Chem. Soc. 2015, 137, 4296-4299.
(71) D. J. Wasylenko, C. Rodriguez, M. L. Pegis, J. M. Mayer, J. Am. Chem. Soc. 2014, 136, 12544-12547.
(72) J. D. Blakemore, R. H. Crabtree, G. W. Brudvig, Chem. Rev. 2015, 115, 12974-13005.
(73) R. Matheu, P. Garrido-Barros, M. Gil-Sepulcre, M. Z. Ertem, X. Sala, C. Gimbert-Suriñach, A. Llobet, Nat. Chem. Rev. 2019, 3, 331-341.
(74) X. J. Wu, F. Li, B. B. Zhang, L. C. Sun, J. Photochem. Photobiol. C 2015, 25, 71-89.
(75) K. J. Lee, B. D. McCarthy, J. L. Dempsey, Chem. Soc. Rev. 2019, 48, 2927-2945.
(76) J. Pérez-Ramírez, N. López, Nat. Catal. 2019, 2, 971-976.
(77) K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Science 2004, 303, 1831-1838.
(78) B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Nature 2005, 438, 1040-1044.
(79) Y. Umena, K. Kawakami, J.^^R. Shen, N. Kamiya, Nature 2011, 473, 55-60.
(80) F. M. Ashmawy, C. A. McAuliffe, R. V. Parish, J. Tames, J. Chem. Soc. Dalton Trans. 1985, 1391-1397.
(81) Y. Gao, J. H. Liu, M. Wang, Y. Na, B. Akermark, L. C. Sun, Tetrahedron 2007, 63, 1987-1994.
(82) Y. Gao, T. Akermark, J. Liu, L. Sun, B. Akermark, J. Am. Chem. Soc. 2009, 131, 8726-8727.
(83) W. Schofberger, F. Faschinger, S. Chattopadhyay, S. Bhakta, B. Mondal, J. A. Elemans, S. Mullegger, S. Tebi, R. Koch, F. Klappenberger, M. Paszkiewicz, J. V. Barth, E. Rauls, H. Aldahhak, W. G. Schmidt, A. Dey, Angew. Chem. Int. Ed. 2016, 55, 2350-2355; Angew. Chem. 2016, 128, 2396-2401.
(84) W. T. Lee, S. B. Munoz, 3rd, D. A. Dickie, J. M. Smith, Angew. Chem. Int. Ed. 2014, 53, 9856-9859; Angew. Chem. 2014, 126, 10014-10017.
(85) K. J. Young, M. K. Takase, G. W. Brudvig, Inorg. Chem. 2013, 52, 7615-7622.
(86) Y. Naruta, M. Sasayama, T. Sasaki, Angew. Chem. Int. Ed. 1994, 33, 1839-1841; Angew. Chem. 1994, 106, 1964-1965.
(87) J. Limburg, J. S. Vrettos, L. M. Liable-Sands, A. L. Rheingold, R. H. Crabtree, G. W. Brudvig, Science 1999, 283, 1524-1527.
(88) J. Limburg, J. S. Vrettos, H. Chen, J. C. de Paula, R. H. Crabtree, G. W. Brudvig, J. Am. Chem. Soc. 2001, 123, 423-430.
(89) C. W. Cady, K. E. Shinopoulos, R. H. Crabtree, G. W. Brudvig, Dalton Trans. 2010, 39, 3985-3989.
(90) H. Yamazaki, S. Igarashi, T. Nagata, M. Yagi, Inorg. Chem. 2012, 51, 1530-1539.
(91) A. K. Poulsen, A. Rompel, C. J. McKenzie, Angew. Chem. Int. Ed. 2005, 44, 6916-6920; Angew. Chem. 2005, 117, 7076-7080.
(92) P. Kurz, G. Berggren, M. F. Anderlund, S. Styring, Dalton Trans. 2007, 4258-4261.
(93) E. A. Karlsson, B. L. Lee, T. Akermark, E. V. Johnston, M. D. Karkas, J. Sun, O. Hansson, J. E. Backvall, B. Akermark, Angew. Chem. Int. Ed. 2011, 50, 11715-11718; Angew. Chem. 2011, 123, 11919-11922.
(94) W. A. Arafa, M. D. Karkas, B. L. Lee, T. Akermark, R. Z. Liao, H. M. Berends, J. Messinger, P. E. Siegbahn, B. Akermark, Phys. Chem. Chem. Phys. 2014, 16, 11950-11964.
(95) G. Berggren, A. Thapper, P. Huang, P. Kurz, L. Eriksson, S. Styring, M. F. Anderlund, Dalton Trans. 2009, 10044-10054.
(96) G. Maayan, N. Gluz, G. Christou, Nat. Catal. 2017, 1, 48-54.
(97) T. Ghosh, G. Maayan, Angew. Chem. Int. Ed. 2019, 58, 2785-2790; Angew. Chem. 2019, 131, 2811-2816.
(98) G. Eilers, C. Zettersten, L. Nyholm, L. Hammarstrom, R. Lomoth, Dalton Trans. 2005, 1033-1041.
(99) M. F. Anderlund, J. Hogblom, W. Shi, P. Huang, L. Eriksson, H. Weihe, S. Styring, B. Akermark, R. Lomoth, A. Magnuson, Eur. J. Inorg. Chem. 2006, 5033-5047.
(100) K. Gopalaiah, Chem. Rev. 2013, 113, 3248-3296.
(101) C. Bolm, J. Legros, J. Le Paih, L. Zani, Chem. Rev. 2004, 104, 6217-6254.
(102) K. Junge, K. Schroder, M. Beller, Chem. Commun. 2011, 47, 4849-4859.
(103) G. L. Elizarova, L. G. Matvienko, N. V. Lozhkina, V. E. Maizlish, V. N. Parmon, React. Kinet. Catal. Lett. 1981, 16, 285-288.
(104) T. J. Collins, Acc. Chem. Res. 2002, 35, 782-790.
(105) W. C. Ellis, N. D. McDaniel, S. Bernhard, T. J. Collins, J. Am. Chem. Soc. 2010, 132, 10990-10991.
(106) C. Panda, J. Debgupta, D. Diaz Diaz, K. K. Singh, S. Sen Gupta, B. B. Dhar, J. Am. Chem. Soc. 2014, 136, 12273-12282.
(107) S. Pattanayak, D. R. Chowdhury, B. Garai, K. K. Singh, A. Paul, B. B. Dhar, S. S. Gupta, Chemistry 2017, 23, 3414-3424.
(108) W. A. Hoffert, M. T. Mock, A. M. Appel, J. Y. Yang, Eur. J. Inorg. Chem. 2013, 2013, 3846-3857.
(109) B. Zhang, F. Li, F. Yu, H. Cui, X. Zhou, H. Li, Y. Wang, L. Sun, Chem. Asian J. 2014, 9, 1515-1518.
(110) W. P. To, T. Wai-Shan Chow, C. W. Tse, X. Guan, J. S. Huang, C. M. Che, Chem. Sci. 2015, 6, 5891-5903.
(111) P. Tan, H. K. Kwong, T. C. Lau, Chem. Commun. 2015, 51, 12189-12192.
(112) B. Yang, Q. Q. Yang, X. Jiang, B. Chen, C. H. Tung, L. Z. Wu, Chem. Commun. 2017, 53, 9063-9066.
(113) Z. Codola, I. Gamba, F. Acuna-Pares, C. Casadevall, M. Clemancey, J. M. Latour, J. M. Luis, J. Lloret-Fillol, M. Costas, J. Am. Chem. Soc. 2019, 141, 323-333.
(114) L. D. Wickramasinghe, R. Zhou, R. Zong, P. Vo, K. J. Gagnon, R. P. Thummel, J. Am. Chem. Soc. 2015, 137, 13260-13263.
(115) L. D. Wickramasinghe, R. Zhou, R. Zong, P. Vo, K. J. Gagnon, R. P. Thummel, J. Am. Chem. Soc. 2015, 137, 13260-13263.
(116) B. Das, A. Orthaber, S. Ott, A. Thapper, ChemSusChem 2016, 9, 1178-1186.
(117) S. M. Al-Zuraiji, T. Benkó, L. Illés, M. Németh, K. Frey, A. Sulyok, J. S. Pap, J. Catal. 2020, 381, 615-625.
(118) M. M. Najafpour, A. N. Moghaddam, D. J. Sedigh, M. Hołyńska, Catal. Sci. Technol. 2014, 4, 30-33.
(119) Y. Liu, R. Xiang, X. Du, Y. Ding, B. Ma, Chem. Commun. 2014, 50, 12779-12782.
(120) A. R. Parent, T. Nakazono, S. Lin, S. Utsunomiya, K. Sakai, Dalton Trans. 2014, 43, 12501-12513.
(121) K. G. Kottrup, S. D'Agostini, P. H. van Langevelde, M. A. Siegler, D. G. H. Hetterscheid, ACS Catal. 2018, 8, 1052-1061.
(122) B. Das, B. L. Lee, E. A. Karlsson, T. Akermark, A. Shatskiy, S. Demeshko, R. Z. Liao, T. M. Laine, M. Haukka, E. Zeglio, A. F. Abdel-Magied, P. E. Siegbahn, F. Meyer, M. D. Karkas, E. V. Johnston, E. Nordlander, B. Akermark, Dalton Trans. 2016, 45, 13289-13293.
(123) M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata, S. Masaoka, Nature 2016, 530, 465-468.
(124) V. K. K. Praneeth, M. Kondo, M. Okamura, T. Akai, H. Izu, S. Masaoka, Chem. Sci. 2019, 10, 4628-4639.
(125) M. Kondo, S. Masaoka, Acc. Chem. Res. 2020, 53, 2140-2151.
(126) E. L. Demeter, S. L. Hilburg, N. R. Washburn, T. J. Collins, J. R. Kitchin, J. Am. Chem. Soc. 2014, 136, 5603-5606.
(127) M. L. Rigsby, S. Mandal, W. Nam, L. C. Spencer, A. Llobet, S. S. Stahl, Chem. Sci. 2012, 3, 3058-3062.
(128) C.-F. Leung, S.-M. Ng, C.-C. Ko, W.-L. Man, J. Wu, L. Chen, T.-C. Lau, Energy Environ. Sci. 2012, 5, 7903-7907.
(129) T. Nakazono, A. R. Parent, K. Sakai, Chem. Commun. 2013, 49, 6325-6327.
(130) E. Pizzolato, M. Natali, B. Posocco, A. Montellano Lopez, I. Bazzan, M. Di Valentin, P. Galloni, V. Conte, M. Bonchio, F. Scandola, A. Sartorel, Chem. Commun. 2013, 49, 9941-9943.
(131) B. Das, A. Orthaber, S. Ott, A. Thapper, Chem. Commun. 2015, 51, 13074-13077.
(132) T. Ishizuka, A. Watanabe, H. Kotani, D. Hong, K. Satonaka, T. Wada, Y. Shiota, K. Yoshizawa, K. Ohara, K. Yamaguchi, S. Kato, S. Fukuzumi, T. Kojima, Inorg. Chem. 2016, 55, 1154-1164.
(133) S. Liu, Y.-J. Lei, Z.-J. Xin, R.-J. Xiang, S. Styring, A. Thapper, H.-Y. Wang, Int. J. Hydrogen Energy 2017, 42, 29716-29724.
(134) A. M. Ullman, Y. Liu, M. Huynh, D. K. Bediako, H. Wang, B. L. Anderson, D. C. Powers, J. J. Breen, H. D. Abruna, D. G. Nocera, J. Am. Chem. Soc. 2014, 136, 17681-17688.
(135) D. Hong, J. Jung, J. Park, Y. Yamada, T. Suenobu, Y.-M. Lee, W. Nam, S. Fukuzumi, Energy Environ. Sci. 2012, 5, 7606-7616.
(136) J.-W. Wang, P. Sahoo, T.-B. Lu, ACS Catal. 2016, 6, 5062-5068.
(137) Q. Daniel, R. B. Ambre, B. Zhang, B. Philippe, H. Chen, F. Li, K. Fan, S. Ahmadi, H. Rensmo, L. Sun, ACS Catal. 2017, 7, 1143-1149.
(138) D. K. Dogutan, R. McGuire Jr., D. G. Nocera, J. Am. Chem. Soc. 2011, 133, 9178-9180.
(139) H. Lei, A. Han, F. Li, M. Zhang, Y. Han, P. Du, W. Lai, R. Cao, Phys. Chem. Chem. Phys. 2014, 16, 1883-1893.
(140) W. Sinha, A. Mizrahi, A. Mahammed, B. Tumanskii, Z. Gross, Inorg. Chem. 2018, 57, 478-485.
(141) T. Nakazono, A. R. Parent, K. Sakai, Chemistry 2015, 21, 6723-6726.
(142) D. Wang, J. T. Groves, Proc. Natl. Acad. Sci. USA 2013, 110, 15579-15584.
(143) D. Das, S. Pattanayak, K. K. Singh, B. Garai, S. Sen Gupta, Chem. Commun. 2016, 52, 11787-11790.
(144) H. Y. Du, S. C. Chen, X. J. Su, L. Jiao, M. T. Zhang, J. Am. Chem. Soc. 2018, 140, 1557-1565.
(145) Z.-Q. Wang, L.-Z. Tang, Y.-X. Zhang, S.-Z. Zhan, J.-S. Ye, J. Power Sources 2015, 287, 50-57.
(146) J. F. Khosrowabadi Kotyk, C. M. Hanna, R. L. Combs, J. W. Ziller, J. Y. Yang, Chem. Sci. 2018, 9, 2750-2755.
(147) D. J. Wasylenko, C. Ganesamoorthy, J. Borau-Garcia, C. P. Berlinguette, Chem. Commun. 2011, 47, 4249-4251.
(148) S. Biswas, S. Bose, J. Debgupta, P. Das, A. N. Biswas, Dalton Trans. 2020, 49, 7155-7165.
(149) Y. Zhao, J. Lin, Y. Liu, B. Ma, Y. Ding, M. Chen, Chem. Commun. 2015, 51, 17309-17312.
(150) M. Chen, S. M. Ng, S. M. Yiu, K. C. Lau, R. J. Zeng, T. C. Lau, Chem. Commun. 2014, 50, 14956-14959.
(151) T. C. Davenport, H. S. Ahn, M. S. Ziegler, T. D. Tilley, Chem. Commun. 2014, 50, 6326-6329.
(152) T. Nakazono, T. Wada, Inorg. Chem. 2021, 60, 1284-1288.
(153) N. S. McCool, D. M. Robinson, J. E. Sheats, G. C. Dismukes, J. Am. Chem. Soc. 2011, 133, 11446-11449.
(154) S. Berardi, G. La Ganga, M. Natali, I. Bazzan, F. Puntoriero, A. Sartorel, F. Scandola, S. Campagna, M. Bonchio, J. Am. Chem. Soc. 2012, 134, 11104-11107.
(155) M. Dinca, Y. Surendranath, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2010, 107, 10337-10341.
(156) D. K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V. K. Yachandra, D. G. Nocera, J. Am. Chem. Soc. 2012, 134, 6801-6809.
(157) R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 2012, 11, 550-557.
(158) L. Wang, L. Duan, R. B. Ambre, Q. Daniel, H. Chen, J. Sun, B. Das, A. Thapper, J. Uhlig, P. Dinér, L. Sun, J. Catal. 2016, 335, 72-78.
(159) L. H. Zhang, F. Yu, Y. Shi, F. Li, H. Li, Chem. Commun. 2019, 55, 6122-6125.
(160) J. Hessels, E. Masferrer-Rius, F. Yu, R. J. Detz, R. J. M. Klein Gebbink, J. N. H. Reek, ChemSusChem 2020, 13, 6629-6634.
(161) M. Zhang, M. T. Zhang, C. Hou, Z. F. Ke, T. B. Lu, Angew. Chem. Int. Ed. 2014, 53, 13042-13048; Angew. Chem. 2014, 126, 13258-13264.
(162) J.-W. Wang, C. Hou, H.-H. Huang, W.-J. Liu, Z.-F. Ke, T.-B. Lu, Catal. Sci. Technol. 2017, 7, 5585-5593.
(163) J. Lin, P. Kang, X. Liang, B. Ma, Y. Ding, Electrochim. Acta 2017, 258, 353-359.
(164) H. Lee, X. Wu, L. Sun, ChemSusChem 2020, 13, 3277-3282.
(165) Y. Han, Y. Wu, W. Lai, R. Cao, Inorg. Chem. 2015, 54, 5604-5613.
(166) G. Y. Luo, H. H. Huang, J. W. Wang, T. B. Lu, ChemSusChem 2016, 9, 485-491.
(167) J.-W. Wang, X.-Q. Zhang, H.-H. Huang, T.-B. Lu, ChemCatChem 2016, 8, 3287-3293.
(168) D. Wang, C. O. Bruner, Inorg. Chem. 2017, 56, 13638-13641.
(169) J. Shen, M. Wang, T. He, J. Jiang, M. Hu, Chem. Commun. 2018, 54, 9019-9022.
(170) A. Khurshid, M. N. Zafar, K. Javed, N. Iqbal, M. N. Arshad, Russ. Chem. Bull. 2020, 69, 2121-2128.
(171) C. E. Elwell, N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth, G. M. Yee, W. B. Tolman, Chem. Rev. 2017, 117, 2059-2107.
(172) G. L. Elizarova, L. G. Matvienko, N. V. Lozhkina, V. N. Parmon, K. I. Zamaraev, React. Kinet. Catal. Lett. 1981, 16, 191-194.
(173) S. M. Barnett, K. I. Goldberg, J. M. Mayer, Nat. Chem. 2012, 4, 498-502.
(174) T. Zhang, C. Wang, S. Liu, J. L. Wang, W. Lin, J. Am. Chem. Soc. 2014, 136, 273-281.
(175) L. A. Stott, K. E. Prosser, E. K. Berdichevsky, C. J. Walsby, J. J. Warren, Chem. Commun. 2017, 53, 651-654.
(176) D. L. Gerlach, S. Bhagan, A. A. Cruce, D. B. Burks, I. Nieto, H. T. Truong, S. P. Kelley, C. J. Herbst-Gervasoni, K. L. Jernigan, M. K. Bowman, S. Pan, M. Zeller, E. T. Papish, Inorg. Chem. 2014, 53, 12689-12698.
(177) K. J. Fisher, K. L. Materna, B. Q. Mercado, R. H. Crabtree, G. W. Brudvig, ACS Catal. 2017, 7, 3384-3387.
(178) H. Kuilya, N. Alam, D. Sarma, D. Choudhury, A. Kalita, Chem. Commun. 2019, 55, 5483-5486.
(179) L.-Z. Fu, T. Fang, L.-L. Zhou, S.-Z. Zhan, RSC Adv. 2014, 4, 53674-53680.
(180) P. Garrido-Barros, I. Funes-Ardoiz, S. Drouet, J. Benet-Buchholz, F. Maseras, A. Llobet, J. Am. Chem. Soc. 2015, 137, 6758-6761.
(181) P. Garrido-Barros, D. Moonshiram, M. Gil-Sepulcre, P. Pelosin, C. Gimbert-Surinach, J. Benet-Buchholz, A. Llobet, J. Am. Chem. Soc. 2020, 142, 17434-17446.
(182) M. T. Zhang, Z. Chen, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2013, 135, 2048-2051.
(183) J. S. Pap, L. Szyrwiel, D. Sranko, Z. Kerner, B. Setner, Z. Szewczuk, W. Malinka, Chem. Commun. 2015, 51, 6322-6324.
(184) A. Prevedello, I. Bazzan, N. Dalle Carbonare, A. Giuliani, S. Bhardwaj, C. Africh, C. Cepek, R. Argazzi, M. Bonchio, S. Caramori, M. Robert, A. Sartorel, Chem. Asian J. 2016, 11, 1281-1287.
(185) F. Yu, F. Li, J. Hu, L. Bai, Y. Zhu, L. Sun, Chem. Commun. 2016, 52, 10377-10380.
(186) R. Terao, T. Nakazono, A. R. Parent, K. Sakai, ChemPlusChem 2016, 81, 1064-1067.
(187) Y. Liu, Y. Han, Z. Zhang, W. Zhang, W. Lai, Y. Wang, R. Cao, Chem. Sci. 2019, 10, 2613-2622.
(188) J. Wang, H. Huang, T. Lu, Chin. J. Chem. 2017, 35, 586-590.
(189) J. Shen, M. Wang, P. Zhang, J. Jiang, L. Sun, Chem. Commun. 2017, 53, 4374-4377.
(190) J. Shen, M. Wang, J. Gao, H. Han, H. Liu, L. Sun, ChemSusChem 2017, 10, 4581-4588.
(191) J. Shen, X. Zhang, M. Cheng, J. Jiang, M. Wang, ChemCatChem 2020, 12, 1302-1306.
(192) M. K. Coggins, M. T. Zhang, Z. Chen, N. Song, T. J. Meyer, Angew. Chem. Int. Ed. 2014, 53, 12226-12230; Angew. Chem. 2014, 126, 12422-12426.
(193) F. Chen, N. Wang, H. Lei, D. Guo, H. Liu, Z. Zhang, W. Zhang, W. Lai, R. Cao, Inorg. Chem. 2017, 56, 13368-13375.
(194) M. C. Kafentzi, R. Papadakis, F. Gennarini, A. Kochem, O. Iranzo, Y. Le Mest, N. Le Poul, T. Tron, B. Faure, A. J. Simaan, M. Reglier, Chemistry 2018, 24, 5213-5224.
(195) X. J. Su, M. Gao, L. Jiao, R. Z. Liao, P. E. Siegbahn, J. P. Cheng, M. T. Zhang, Angew. Chem. Int. Ed. 2015, 54, 4909-4914; Angew. Chem. 2015, 127, 4991-4996.
(196) Q. Q. Hu, X. J. Su, M. T. Zhang, Inorg. Chem. 2018, 57, 10481-10484.
(197) L.-L. Zhou, T. Fang, J.-P. Cao, Z.-H. Zhu, X.-T. Su, S.-Z. Zhan, J. Power Sources 2015, 273, 298-304.
(198) T. Fang, L.-Z. Fu, L.-L. Zhou, S.-Z. Zhan, Electrochim. Acta 2015, 161, 388-394.
(199) S. J. Koepke, K. M. Light, P. E. VanNatta, K. M. Wiley, M. T. Kieber-Emmons, J. Am. Chem. Soc. 2017, 139, 8586-8600.
(200) X. Zhang, Y. Y. Li, J. Jiang, R. Zhang, R. Z. Liao, M. Wang, Inorg. Chem. 2020, 59, 5424-5432.
(201) T. T. Li, Y. Q. Zheng, Dalton Trans. 2016, 45, 12685-12690.
(202) V. K. K. Praneeth, M. Kondo, P. M. Woi, M. Okamura, S. Masaoka, ChemPlusChem 2016, 81, 1123-1128.
(203) X. Jiang, J. Li, B. Yang, X. Z. Wei, B. W. Dong, Y. Kao, M. Y. Huang, C. H. Tung, L. Z. Wu, Angew. Chem. Int. Ed. 2018, 57, 7850-7854; Angew. Chem. 2018, 130, 7976-7980.
(204) I. Funes-Ardoiz, P. Garrido-Barros, A. Llobet, F. Maseras, ACS Catal. 2017, 7, 1712-1719.
(205) X. Du, J. Huang, Y. Ding, Dalton Trans. 2017, 46, 7327-7331.
(206) T. Shinagawa, M. T. Ng, K. Takanabe, ChemSusChem 2017, 10, 4155-4162.
(207) T. Shinagawa, K. Takanabe, ChemSusChem 2017, 10, 1318-1336.
(208) S. Anantharaj, V. Aravindan, Adv. Energy Mater. 2019, 10, 1902666.
(209) A. Shatskiy, M. D. Kärkäs, B. Åkermark, Eur. J. Inorg. Chem. 2019, 2019, 2020-2024.
(210) D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, T. J. Meyer, Chem. Rev. 2012, 112, 4016-4093.
(211) Z. Chen, J. J. Concepcion, X. Hu, W. Yang, P. G. Hoertz, T. J. Meyer, Proc. Natl. Acad. Sci. USA 2010, 107, 7225-7229.
(212) C. Costentin, J. M. Saveant, J. Am. Chem. Soc. 2017, 139, 8245-8250.
(213) B. Zhang, L. Sun, J. Am. Chem. Soc. 2019, 141, 5565-5580.
(214) R. M. Bullock, A. K. Das, A. M. Appel, Chemistry 2017, 23, 7626-7641.
(215) F. Li, H. Yang, W. Li, L. Sun, Joule 2018, 2, 36-60.

Chapter 3
(1) J. Chow, R. J. Kopp, P. R. Portney, Science 2003, 302, 1528-1531.
(2) P. A. Owusu, S. Asumadu-Sarkodie, Cogent Eng. 2016, 3, 1167990.
(3) R. Schlögl, Top. Catal. 2016, 59, 772-786.
(4) S. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501-7519.
(5) I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, K. R. Ward, Energy Environ. Sci. 2019, 12, 463-491.
(6) S. Fankhauser, S. M. Smith, M. Allen, K. Axelsson, T. Hale, C. Hepburn, J. M. Kendall, R. Khosla, J. Lezaun, E. Mitchell-Larson, M. Obersteiner, L. Rajamani, R. Rickaby, N. Seddon, T. Wetzer, Nat. Clim. Change 2022, 12, 15-21.
(7) J. D. Blakemore, R. H. Crabtree, G. W. Brudvig, Chem. Rev. 2015, 115, 12974-13005.
(8) S. Wang, A. L. Lu, C. J. Zhong, Nano Converg. 2021, 8, 4.
(9) S. Fukuzumi, D. Hong, Eur. J. Inorg. Chem. 2014, 2014, 645-659.
(10) S. Fukuzumi, Y. M. Lee, W. Nam, Dalton Trans. 2019, 48, 779-798.
(11) J. Li, C. A. Triana, W. Wan, D. P. Adiyeri Saseendran, Y. Zhao, S. E. Balaghi, S. Heidari, G. R. Patzke, Chem. Soc. Rev. 2021, 50, 2444-2485.
(12) B. M. Stratakes, J. L. Dempsey, A. J. M. Miller, ChemElectroChem 2021, 8, 4161-4180.
(13) S. Anantharaj, P. E. Karthik, S. Noda, Angew. Chem. Int. Ed. 2021, 60, 23051-23067.
(14) W.-C. Hsu, Y.-H. Wang, ChemSusChem 2022, 15, e202102378.
(15) M. D. Karkas, O. Verho, E. V. Johnston, B. Akermark, Chem. Rev. 2014, 114, 11863-12001.
(16) R. Matheu, P. Garrido-Barros, M. Gil-Sepulcre, M. Z. Ertem, X. Sala, C. Gimbert-Suriñach, A. Llobet, Nat. Rev. Chem. 2019, 3, 331-341.
(17) A. Ghaderian, S. Kazim, M. K. Nazeeruddin, S. Ahmad, Coord. Chem. Rev. 2022, 450, 214256.
(18) J. M. Thomsen, D. L. Huang, R. H. Crabtree, G. W. Brudvig, Dalton Trans. 2015, 44, 12452-12472.
(19) A. Macchioni, Eur. J. Inorg. Chem. 2019, 2019, 7-17.
(20) M. Kondo, H. Tatewaki, S. Masaoka, Chem. Soc. Rev. 2021, 50, 6790-6831.
(21) L. H. Zhang, S. Mathew, J. Hessels, J. N. H. Reek, F. Yu, ChemSusChem 2021, 14, 234-250.
(22) X. Sala, I. Romero, M. Rodriguez, L. Escriche, A. Llobet, Angew. Chem. Int. Ed. 2009, 48, 2842-2852.
(23) C. Sens, I. Romero, M. Rodriguez, A. Llobet, T. Parella, J. Benet-Buchholz, J. Am. Chem. Soc. 2004, 126, 7798-7799.
(24) Y. Xu, A. Fischer, L. Duan, L. Tong, E. Gabrielsson, B. Akermark, L. Sun, Angew. Chem. Int. Ed. 2010, 49, 8934-8937.
(25) S. Maji, L. Vigara, F. Cottone, F. Bozoglian, J. Benet-Buchholz, A. Llobet, Angew. Chem. Int. Ed. 2012, 51, 5967-5970.
(26) M. L. Rigsby, S. Mandal, W. Nam, L. C. Spencer, A. Llobet, S. S. Stahl, Chem. Sci. 2012, 3, 3058-3062.
(27) T. C. Davenport, H. S. Ahn, M. S. Ziegler, T. D. Tilley, Chem. Commun. 2014, 50, 6326-6329.
(28) D. Hong, J. Jung, J. Park, Y. Yamada, T. Suenobu, Y.-M. Lee, W. Nam, S. Fukuzumi, Energy Environ. Sci. 2012, 5, 7606-7616.
(29) A. M. Ullman, Y. Liu, M. Huynh, D. K. Bediako, H. Wang, B. L. Anderson, D. C. Powers, J. J. Breen, H. D. Abruna, D. G. Nocera, J. Am. Chem. Soc. 2014, 136, 17681-17688.
(30) J.-W. Wang, P. Sahoo, T.-B. Lu, ACS Catal. 2016, 6, 5062-5068.
(31) M. J. Craig, G. Coulter, E. Dolan, J. Soriano-Lopez, E. Mates-Torres, W. Schmitt, M. Garcia-Melchor, Nat Commun 2019, 10, 4993.
(32) J. Pérez-Ramírez, N. López, Nat. Catal. 2019, 2, 971-976.
(33) J. DePasquale, I. Nieto, L. E. Reuther, C. J. Herbst-Gervasoni, J. J. Paul, V. Mochalin, M. Zeller, C. M. Thomas, A. W. Addison, E. T. Papish, Inorg. Chem. 2013, 52, 9175-9183.
(34) T. Zhang, C. Wang, S. Liu, J. L. Wang, W. Lin, J. Am. Chem. Soc. 2014, 136, 273-281.
(35) P. Garrido-Barros, I. Funes-Ardoiz, S. Drouet, J. Benet-Buchholz, F. Maseras, A. Llobet, J. Am. Chem. Soc. 2015, 137, 6758-6761.
(36) L. A. Stott, K. E. Prosser, E. K. Berdichevsky, C. J. Walsby, J. J. Warren, Chem. Commun. 2017, 53, 651-654.
(37) P. Garrido-Barros, D. Moonshiram, M. Gil-Sepulcre, P. Pelosin, C. Gimbert-Surinach, J. Benet-Buchholz, A. Llobet, J. Am. Chem. Soc. 2020, 142, 17434-17446. P. Garrido-Barros, D. Moonshiram, M. Gil-Sepulcre, P. Pelosin, C. Gimbert-Surinach, J. Benet-Buchholz, A. Llobet, J. Am. Chem. Soc. 2020, 142, 17434-17446.
(38) V. Lyaskovskyy, B. de Bruin, ACS Catal. 2012, 2, 270-279.
(39) L. A. Berben, B. de Bruin, A. F. Heyduk, Chem. Commun. 2015, 51, 1553-1554.
(40) B. Singh, A. Indra, Inorg. Chim. Acta. 2020, 506, 119440.
(41) M. Sutradhar, A. J. L. Pombeiro, J. A. L. da Silva, Coord. Chem. Rev. 2021, 439, 213911.
(42) M. Gil-Sepulcre, A. Llobet, Nat. Catal. 2022, 5, 79-82.
(43) S. Baitalik, U. Florke, K. Nag, Inorg. Chem. 1999, 38, 3296-3308.
(44) G. Givaja, M. Volpe, M. A. Edwards, A. J. Blake, C. Wilson, M. Schroder, J. B. Love, Angew. Chem. Int. Ed. 2007, 46, 584-586.
(45) S. Fukuzumi, S. Mandal, K. Mase, K. Ohkubo, H. Park, J. Benet-Buchholz, W. Nam, A. Llobet, J. Am. Chem. Soc. 2012, 134, 9906-9909.
(46) F. R. Louka, L. T. Nguyen, J. H. Albering, F. A. Mautner, S. S. Massoud, Inorg. Chem. Commun. 2012, 15, 269-271.
(47) M. Volpe, H. Hartnett, J. W. Leeland, K. Wills, M. Ogunshun, B. J. Duncombe, C. Wilson, A. J. Blake, J. McMaster, J. B. Love, Inorg. Chem. 2009, 48, 5195-5207.
(48) A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition Wiley, New York, 2001.
(49) K. J. Lee, B. D. McCarthy, J. L. Dempsey, Chem. Soc. Rev. 2019, 48, 2927-2945.
(50) M. Dinca, Y. Surendranath, D. G. Nocera, Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 10337-10341.
(51) N. Vereshchuk, J. Holub, M. Gil-Sepulcre, J. Benet-Buchholz, A. Llobet, ACS Catal. 2021, 11, 5240-5247.
(52) G. M. Eisenberg, Ind. Eng. Chem., Anal. Ed. 1943, 15, 327-328.
(53) Y. Lee, G. Y. Park, H. R. Lucas, P. L. Vajda, K. Kamaraj, M. A. Vance, A. E. Milligan, J. S. Woertink, M. A. Siegler, A. A. Narducci Sarjeant, L. N. Zakharov, A. L. Rheingold, E. I. Solomon, K. D. Karlin, Inorg. Chem. 2009, 48, 11297-11309.
(54) E. S. Rountree, B. D. McCarthy, T. T. Eisenhart, J. L. Dempsey, Inorg. Chem. 2014, 53, 9983-10002.
(55) K. J. Lee, N. Elgrishi, B. Kandemir, J. L. Dempsey, Nat. Rev. Chem. 2017, 1, 0039.
(56) C. Costentin, J.-M. Savéant, ChemElectroChem 2014, 1, 1226-1236.
(57) Z. Chen, J. J. Concepcion, X. Hu, W. Yang, P. G. Hoertz, T. J. Meyer, Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 7225-7229.
(58) D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, T. J. Meyer, Chem. Rev. 2012, 112, 4016-4093.
(59) A. Shatskiy, M. D. Kärkäs, B. Åkermark, Eur. J. Inorg. Chem. 2019, 2019, 2020-2024.
(60) D. Wang, J. T. Groves, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 15579-15584.
(61) N. Song, J. J. Concepcion, R. A. Binstead, J. A. Rudd, A. K. Vannucci, C. J. Dares, M. K. Coggins, T. J. Meyer, Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 4935-4940.
(62) The cyclic voltammetric studies shown in Figure 3.4d reveal that the one-electron oxidation of 2 can occur at 1.54 V but not at 0.60 V, and this oxidation potential is not affected by the presence of a Lewis base. In Figure S 3.28c,d,g,h, the strong similiarity of the time-resolved UV-Vis SEC spectra is an unexpected finding and this will be the subject of a future publication.
(63) S. Mishra, L. G. Hubert-Pfalzgraf, M. Rolland, H. Chermette, Inorg. Chem. Commun. 2007, 10, 15-19.
(64) J. F. Acheson, L. J. Bailey, T. C. Brunold, B. G. Fox, Nature 2017, 544, 191-195.
(65) A. J. Jasniewski, A. J. Komor, J. D. Lipscomb, L. Que, J. Am. Chem. Soc. 2017, 139, 10472-10485.
(66) T. De Vijlder, D. Valkenborg, F. Lemiere, E. P. Romijn, K. Laukens, F. Cuyckens, Mass Spectrom. Rev. 2018, 37, 607-629.
(67) B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 2004, 104, 3947-3980.
(68) X. Y. Huang, J. T. Groves, Chem. Rev. 2018, 118, 2491-2553.
(69) K. A. Prokop, H. M. Neu, S. P. de Visser, D. P. Goldberg, J. Am. Chem. Soc. 2011, 133, 15874-15877.
(70) J. P. T. Zaragoza, R. A. Baglia, M. A. Siegler, D. P. Goldberg, J. Am. Chem. Soc. 2015, 137, 6531-6540.
(71) R. A. Baglia, J. P. T. Zaragoza, D. P. Goldberg, Chem. Rev. 2017, 117, 13320-13352.
(72) J. J. D. Sacramento, D. P. Goldberg, Acc. Chem. Res. 2018, 51, 2641-2652.
(73) Y. H. Hong, Y. Jang, R. Ezhov, M. S. Seo, Y. M. Lee, B. Pandey, S. Hong, Y. Pushkar, S. Fukuzumi, W. Nam, ACS Catal. 2021, 11, 2889-2901.
(74) A. M. Appel, M. L. Helm, ACS Catal. 2014, 4, 630-633.
(75) J. A. Roberts, R. M. Bullock, Inorg. Chem. 2013, 52, 3823-3835.
(76) B. Mondal, S. Chattopadhyay, S. Dey, A. Mahammed, K. Mittra, A. Rana, Z. Gross, A. Dey, J. Am. Chem. Soc. 2020, 142, 21040-21049.
(77) Y.-H. Wang, B. Mondal, S. S. Stahl, ACS Catal. 2020, 10, 12031-12039.
(78) M. D. Karkas, E. V. Johnston, E. A. Karlsson, B. L. Lee, T. Akermark, M. Shariatgorji, L. Ilag, O. Hansson, J. E. Backvall, B. Akermark, Chem. Eur. J. 2011, 17, 7953-7959.
(79) T. M. Laine, M. D. Karkas, R. Z. Liao, T. Akermark, B. L. Lee, E. A. Karlsson, P. E. Siegbahn, B. Akermark, Chem. Commun. 2015, 51, 1862-1865.
(80) S. Berardi, L. Francas, S. Neudeck, S. Maji, J. Benet-Buchholz, F. Meyer, A. Llobet, ChemSusChem 2015, 8, 3688-3696.
(81) C. Costentin, S. Drouet, M. Robert, J. M. Saveant, J. Am. Chem. Soc. 2012, 134, 11235-11242.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *