|
[1] I. Esteban, M. C. Gonz´alez-Garc´ıa, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints: updated global analysis of three-flavor neutrino oscillations,” Journal of High Energy Physics, vol. 2020, no. 9, pp. 1–22, 2020.
[2] B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett., vol. 126, no. 14, p. 141801, 2021.
[3] P. Minkowski, “µ → eγ at a Rate of One Out of 109 Muon Decays?,” Phys. Lett. B, vol. 67, pp. 421–428, 1977.
[4] M. Gell-Mann, P. Ramond, and R. Slansky, “In supergravity workshop stony brook, new york, september 27–28, 1979. conf,” Proc. C, vol. 790927, p. 315, 1979.
[5] T. Yanagida, “Horizontal gauge symmetry and masses of neutrinos,” Conf. Proc. C, vol. 7902131, pp. 95–99, 1979.
[6] R. N. Mohapatra and G. Senjanovi´c, “Neutrino mass and spontaneous parity nonconservation,” Phys. Rev. Lett., vol. 44, pp. 912–915, Apr 1980.
[7] A. Zee, “A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation,” Phys. Lett. B, vol. 93, p. 389, 1980. [Erratum: Phys.Lett.B 95, 461 (1980)].
[8] A. Zee, “Quantum Numbers of Majorana Neutrino Masses,” Nucl. Phys. B, vol. 264, pp. 99–110, 1986.
[9] K. S. Babu, “Model of ’Calculable’ Majorana Neutrino Masses,” Phys. Lett. B, vol. 203, pp. 132–136, 1988.
[10] Y. Cai, J. Herrero Garc´ıa, M. A. Schmidt, A. Vicente, and R. R. Volkas, “From the trees to the forest: a review of radiative neutrino mass models,” Frontiers in Physics, vol. 5, p. 63, 2017.
[11] P. Athron, C. Bal´azs, D. H. Jacob, W. Kotlarski, D. St¨ockinger, and H. St¨ockinger-Kim, “New physics explanations of aµ in light of the fnal muon g- 2 measurement,” Journal of High Energy Physics, vol. 2021, no. 9, pp. 1– 115, 2021.
[12] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. M¨uller, “Measurement of the fine-structure constant as a test of the Standard Model,” Science, vol. 360, p. 191, 2018.
[13] T. Aoyama, T. Kinoshita, and M. Nio, “Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment,” Phys. Rev. D, vol. 97, no. 3, p. 036001, 2018.
[14] S. Laporta, “High-precision calculation of the 4-loop contribution to the electron g-2 in QED,” Phys. Lett. B, vol. 772, pp. 232–238, 2017.
[15] D. Hanneke, S. Fogwell, and G. Gabrielse, “New Measurement of the Electron Magnetic Moment and the Fine Structure Constant,” Phys. Rev. Lett., vol. 100, p. 120801, 2008.
[16] D. Hanneke, S. F. Hoogerheide, and G. Gabrielse, “Cavity Control of a Single-Electron Quantum Cyclotron: Measuring the Electron Magnetic Moment,” Phys. Rev. A, vol. 83, p. 052122, 2011.
[17] L. Morel, Z. Yao, P. Clad´e, and S. Guellati-Kh´elifa, “Determination of the fine-structure constant with an accuracy of 81 parts per trillion,” Nature, vol. 588, no. 7836, pp. 61–65, 2020.
[18] C.-H. Chen and T. Nomura, “Electron and muon g − 2, radiative neutrino mass, and ℓ′ → ℓγ in a U(1)e−µ model,” Nucl. Phys. B, vol. 964, p. 115314, 2021.
[19] J. S. Alvarado, M. A. Bulla, D. G. Martinez, and R. Martinez, “Explaining muon g − 2 anomaly in a non-universal U(1)X extended SUSY theory,” 10 2020.
[20] S. Zhou, “Neutrino masses, leptonic flavor mixing, and muon (g−2) in the seesaw model with the gauge symmetry *,” Chin. Phys. C, vol. 46, no. 12, p. 011001, 2022.
[21] D. A. Dicus, H.-J. He, and J. N. Ng, “Neutrino - lepton masses, Zee scalars and muon g-2,” Phys. Rev. Lett., vol. 87, p. 111803, 2001.
[22] A. C. Hern´andez, S. King, H. Lee, and S. Rowley, “Is it possible to explain the muon and electron g- 2 in a z model?,” Physical Review D, vol. 101, no. 11, p. 115016, 2020.
[23] J. Liu, C. E. Wagner, and X.-P. Wang, “A light complex scalar for the electron and muon anomalous magnetic moments,” Journal of High Energy Physics, vol. 2019, no. 3, pp. 1–25, 2019.
[24] A. Ahriche, K. L. McDonald, and S. Nasri, “The Scale-Invariant Scotogenic Model,” JHEP, vol. 06, p. 182, 2016.
[25] A. Greljo, P. Stangl, and A. E. Thomsen, “A model of muon anomalies,” Physics Letters B, vol. 820, p. 136554, 2021.
[26] M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, and E. Picciau, “Muon and electron g- 2 and proton and cesium weak charges implications on dark z d models,” Physical Review D, vol. 104, no. 1, p. L011701, 2021.
[27] D. Borah, M. Dutta, S. Mahapatra, and N. Sahu, “Muon (g- 2) and xenon1t excess with boosted dark matter in lµ- lτ model,” Physics Letters B, vol. 820, p. 136577, 2021.
[28] D. W. P. Amaral, D. G. Cerdeno, A. Cheek, and P. Foldenauer, “Confirming U(1)Lµ−Lτ as a solution for (g − 2)µ with neutrinos,” Eur. Phys. J. C, vol. 81, no. 10, p. 861, 2021.
[29] A. Bodas, R. Coy, and S. J. D. King, “Solving the electron and muon g − 2 anomalies in Z′ models,” Eur. Phys. J. C, vol. 81, no. 12, p. 1065, 2021.
[30] T. Toma and A. Vicente, “Lepton Flavor Violation in the Scotogenic Model,” JHEP, vol. 01, p. 160, 2014.
[31] M. Abdullah, B. Dutta, S. Ghosh, and T. Li, “(g- 2) µ, e and the anita anomalous events in a three-loop neutrino mass model,” Physical Review D, vol. 100, no. 11, p. 115006, 2019.
[32] K. S. Babu, S. Jana, M. Lindner, and V. P. K, “Muon g − 2 anomaly and neutrino magnetic moments,” JHEP, vol. 10, p. 240, 2021.
[33] G. Alonso-´Alvarez and J. M. Cline, “Gauging lepton flavor SU(3) for the muon g − 2,” 11 2021.
[34] P. Zyla et al., “Review of Particle Physics,” PTEP, vol. 2020, no. 8, p. 083C01, 2020.
[35] S. Borsanyi et al., “Leading hadronic contribution to the muon magnetic moment from lattice QCD,” Nature, vol. 593, no. 7857, pp. 51–55, 2021.
[36] G. Bernardi et al., “The Future Circular Collider: a Summary for the US 2021 Snowmass Process,” 3 2022.
[37] A. M. Baldini et al., “The design of the MEG II experiment,” Eur. Phys. J. C, vol. 78, no. 5, p. 380, 2018.
[38] W. Altmannshofer et al., “The Belle II Physics Book,” PTEP, vol. 2019, no. 12, p. 123C01, 2019. [Erratum: PTEP 2020, 029201 (2020)]. |