帳號:guest(13.59.84.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭士賢
作者(外文):Kuo, Shih-Hsien
論文名稱(中文):一個解釋微中子質量與輕子反常磁矩的U(1)規範模型
論文名稱(外文):A Hidden Gauged U(1) Model for Neutrino Mass and (g-2)_{e, \mu}
指導教授(中文):張維甫
指導教授(外文):Chang, We-Fu
口試委員(中文):陳樫旭
曾柏彥
口試委員(外文):Chen, Chian-Shu
Tseng, Po-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:107022562
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:53
中文關鍵詞:U(1)微中子反常磁矩規範模型
外文關鍵詞:U(1) modelneutrino massg-2gauge
相關次數:
  • 推薦推薦:0
  • 點閱點閱:36
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
微中子震盪和最近測量到的渺子及電子g-2實驗結果沒辦法用標準模型解釋。為了解釋這些現象,我們造了一個模型,並引進了四個標量子(Scalars)和二對向量費米子(Vector Fermions)。模型中只有新粒子帶有U(1)_X電荷,而標準模型粒子都是U(1)_X電中性的,所以新物理的影響至少都是一個迴圈以上的費曼圖修正。數值掃描完成後,我們發現對於正常階層(normal hierarchy)的微中子,△ a_\mu ∈ [5,8] × 10^{-10};對於相反階層(inverted hierarchy)的微中子,△ a_\mu ∈ [3,5] × 10^{-10}。這是因為味道改變的中性電流(flavor-changing neutral currents)的實驗限制。我們的模型不支持目前實驗與理論的差別。但是如果新的晶格量子色動力學(Lattice QCD)的計算是正確的,標準模型預測的渺子g-2會更大,而△ a_\mu會更小,則我們的模型就有機會成功給出合適的△ a_\mu。我們的模型可以
解釋兩種不同的△ a_e也可以造出正常階層或是相反階層的微中子。其中沒有
任何一個被排除掉。這個模型有可能會產生很大的希格斯子到電子正子對的衰變率(Γ (H → e e)),甚至是標準模型預測的十幾倍大。
We consider a hidden gauged U(1)_X model to explain the observed neutrino oscillation data and anomalous magnetic moments of electron and muon; which cannot be explained by the Standard Model (SM).
This U(1)_X model introduces four exotic scalars and two pairs of vector fermions. Because the SM particles are U(1)_X singlets, neutrino mass generation and △ a_l begin at the one-loop level. In our model, △ a_\mu is strongly constrained by the flavor-changing neutral currents (FCNC). Our numerical study shows that △ a_\mu ∈ [5,8] × 10^{-10} for inverted-ordering (IO) neutrino data and △ a_\mu ∈ [3,5] × 10^{-10} for normal-ordering (NO) neutrino data. If the experimental FCNC constraint is improved in the future, the predicted $\Delta a_\mu$ will be further suppressed. Our model does not support the current experimentally measured $\Delta a_\mu$ but seems to be preferred by the new lattice QCD evaluation on the hadronic contribution to muon g-2. Our model can accommodate either the central value of the measured △ a_e^{Cs} or that of △ a_e^{Rb}. Besides, both NO and IO neutrino mass can be well explained in this model. Our model predicts a large, ~ ten times the SM prediction, Γ (H → e e) Higgs decay rate in some viable model parameter space. Moreover, the effective Higgs-electron Yukawa coupling could be negative in our model.
1 Introduction . . . 1

2 Higgs Mechanism and Neutrino Oscillation . . . 4
2.1 Higgs Mechanism . . . 4
2.2 PMNS Matrix and Lepton Mixing . . . 7
2.3 Neutrino Oscillation . . . 9

3 The Model . . . 11
3.1 The Mixing of H and S2 after SSB . . . 13
3.2 Mixing of the New Fermions . . . 15
3.3 Mixing of New Scalars . . . 17

4 The Flavor Physics . . . 19
4.1 ∆al and l → lγ . . . 19
4.2 Lepton Mass Mixing . . . 21
4.3 Neutrino Mass and The Rank of Matrices . . . 22
4.4 H → ll Decay . . . 24

5 Numerical Analysis 27
5.1 Constraints on the neutrino oscillation and l → l γ . . . 27
5.2 Numerical strategy . . . 28
5.3 Numerical results and discussion . . . 30

6 Conclusion . . . 40

A Calculations . . . 42
A.1 Nonlinear Realization . . . 42
A.2 Calculations about Feynman diagrams . . . 43
A.3 Calculation of li → lj γ . . . . 44
B Benchmark Points . . . 47

Bibliography . . . 49
[1] I. Esteban, M. C. Gonz´alez-Garc´ıa, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints: updated global analysis of three-flavor neutrino oscillations,” Journal of High Energy Physics, vol. 2020, no. 9, pp. 1–22, 2020.

[2] B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett., vol. 126, no. 14, p. 141801, 2021.

[3] P. Minkowski, “µ → eγ at a Rate of One Out of 109 Muon Decays?,” Phys. Lett. B, vol. 67, pp. 421–428, 1977.

[4] M. Gell-Mann, P. Ramond, and R. Slansky, “In supergravity workshop stony brook, new york, september 27–28, 1979. conf,” Proc. C, vol. 790927, p. 315, 1979.

[5] T. Yanagida, “Horizontal gauge symmetry and masses of neutrinos,” Conf. Proc. C, vol. 7902131, pp. 95–99, 1979.

[6] R. N. Mohapatra and G. Senjanovi´c, “Neutrino mass and spontaneous parity nonconservation,” Phys. Rev. Lett., vol. 44, pp. 912–915, Apr 1980.

[7] A. Zee, “A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation,” Phys. Lett. B, vol. 93, p. 389, 1980. [Erratum: Phys.Lett.B 95, 461 (1980)].

[8] A. Zee, “Quantum Numbers of Majorana Neutrino Masses,” Nucl. Phys. B, vol. 264, pp. 99–110, 1986.

[9] K. S. Babu, “Model of ’Calculable’ Majorana Neutrino Masses,” Phys. Lett. B, vol. 203, pp. 132–136, 1988.

[10] Y. Cai, J. Herrero Garc´ıa, M. A. Schmidt, A. Vicente, and R. R. Volkas, “From the trees to the forest: a review of radiative neutrino mass models,” Frontiers in Physics, vol. 5, p. 63, 2017.

[11] P. Athron, C. Bal´azs, D. H. Jacob, W. Kotlarski, D. St¨ockinger, and H. St¨ockinger-Kim, “New physics explanations of aµ in light of the fnal muon g- 2 measurement,” Journal of High Energy Physics, vol. 2021, no. 9, pp. 1– 115, 2021.

[12] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. M¨uller, “Measurement of the fine-structure constant as a test of the Standard Model,” Science, vol. 360, p. 191, 2018.

[13] T. Aoyama, T. Kinoshita, and M. Nio, “Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment,” Phys. Rev. D, vol. 97, no. 3, p. 036001, 2018.

[14] S. Laporta, “High-precision calculation of the 4-loop contribution to the electron g-2 in QED,” Phys. Lett. B, vol. 772, pp. 232–238, 2017.

[15] D. Hanneke, S. Fogwell, and G. Gabrielse, “New Measurement of the Electron Magnetic Moment and the Fine Structure Constant,” Phys. Rev. Lett., vol. 100, p. 120801, 2008.

[16] D. Hanneke, S. F. Hoogerheide, and G. Gabrielse, “Cavity Control of a Single-Electron Quantum Cyclotron: Measuring the Electron Magnetic Moment,” Phys. Rev. A, vol. 83, p. 052122, 2011.

[17] L. Morel, Z. Yao, P. Clad´e, and S. Guellati-Kh´elifa, “Determination of the fine-structure constant with an accuracy of 81 parts per trillion,” Nature, vol. 588, no. 7836, pp. 61–65, 2020.

[18] C.-H. Chen and T. Nomura, “Electron and muon g − 2, radiative neutrino mass, and ℓ′ → ℓγ in a U(1)e−µ model,” Nucl. Phys. B, vol. 964, p. 115314, 2021.

[19] J. S. Alvarado, M. A. Bulla, D. G. Martinez, and R. Martinez, “Explaining muon g − 2 anomaly in a non-universal U(1)X extended SUSY theory,” 10 2020.

[20] S. Zhou, “Neutrino masses, leptonic flavor mixing, and muon (g−2) in the seesaw model with the gauge symmetry *,” Chin. Phys. C, vol. 46, no. 12, p. 011001, 2022.

[21] D. A. Dicus, H.-J. He, and J. N. Ng, “Neutrino - lepton masses, Zee scalars and muon g-2,” Phys. Rev. Lett., vol. 87, p. 111803, 2001.

[22] A. C. Hern´andez, S. King, H. Lee, and S. Rowley, “Is it possible to explain the muon and electron g- 2 in a z model?,” Physical Review D, vol. 101, no. 11, p. 115016, 2020.

[23] J. Liu, C. E. Wagner, and X.-P. Wang, “A light complex scalar for the electron and muon anomalous magnetic moments,” Journal of High Energy Physics, vol. 2019, no. 3, pp. 1–25, 2019.

[24] A. Ahriche, K. L. McDonald, and S. Nasri, “The Scale-Invariant Scotogenic Model,” JHEP, vol. 06, p. 182, 2016.

[25] A. Greljo, P. Stangl, and A. E. Thomsen, “A model of muon anomalies,” Physics Letters B, vol. 820, p. 136554, 2021.

[26] M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, and E. Picciau, “Muon and electron g- 2 and proton and cesium weak charges implications on dark z d models,” Physical Review D, vol. 104, no. 1, p. L011701, 2021.

[27] D. Borah, M. Dutta, S. Mahapatra, and N. Sahu, “Muon (g- 2) and xenon1t excess with boosted dark matter in lµ- lτ model,” Physics Letters B, vol. 820, p. 136577, 2021.

[28] D. W. P. Amaral, D. G. Cerdeno, A. Cheek, and P. Foldenauer, “Confirming U(1)Lµ−Lτ as a solution for (g − 2)µ with neutrinos,” Eur. Phys. J. C, vol. 81, no. 10, p. 861, 2021.

[29] A. Bodas, R. Coy, and S. J. D. King, “Solving the electron and muon g − 2 anomalies in Z′ models,” Eur. Phys. J. C, vol. 81, no. 12, p. 1065, 2021.

[30] T. Toma and A. Vicente, “Lepton Flavor Violation in the Scotogenic Model,” JHEP, vol. 01, p. 160, 2014.

[31] M. Abdullah, B. Dutta, S. Ghosh, and T. Li, “(g- 2) µ, e and the anita anomalous events in a three-loop neutrino mass model,” Physical Review D, vol. 100, no. 11, p. 115006, 2019.

[32] K. S. Babu, S. Jana, M. Lindner, and V. P. K, “Muon g − 2 anomaly and neutrino magnetic moments,” JHEP, vol. 10, p. 240, 2021.

[33] G. Alonso-´Alvarez and J. M. Cline, “Gauging lepton flavor SU(3) for the muon g − 2,” 11 2021.

[34] P. Zyla et al., “Review of Particle Physics,” PTEP, vol. 2020, no. 8, p. 083C01, 2020.

[35] S. Borsanyi et al., “Leading hadronic contribution to the muon magnetic moment from lattice QCD,” Nature, vol. 593, no. 7857, pp. 51–55, 2021.

[36] G. Bernardi et al., “The Future Circular Collider: a Summary for the US 2021 Snowmass Process,” 3 2022.

[37] A. M. Baldini et al., “The design of the MEG II experiment,” Eur. Phys. J. C, vol. 78, no. 5, p. 380, 2018.

[38] W. Altmannshofer et al., “The Belle II Physics Book,” PTEP, vol. 2019, no. 12, p. 123C01, 2019. [Erratum: PTEP 2020, 029201 (2020)].
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *