帳號:guest(18.117.91.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅嘉暐
作者(外文):Lo, Chia-Wei
論文名稱(中文):以聚焦離子束技術製備約瑟芬收縮結
論文名稱(外文):The fabrication of Josephson constrict junction by using focused ion beam technology
指導教授(中文):陳正中
指導教授(外文):Chen, Jeng-Chung
口試委員(中文):林大欽
吳憲昌
口試委員(外文):Lin, Da-Chin
Wu, Shian-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:107022552
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:65
中文關鍵詞:聚焦離子束約瑟芬收縮結約瑟芬結
外文關鍵詞:focused ion beamFIBjosephson junctionjosephson constrict junction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:66
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文的目的是利用聚焦離子束技術加工出約瑟芬收縮結。我們製作出具有SQUID或SET架構的樣品,利用SQUID結構調控磁通量,進而影響樣品超導電子波函數相位差;利用SET結構觀測以此技術是否能製作出具有充電能量的結構。
在製程上以聚焦離子束技術製作了長度落在18-54 nm、寬度落在 11-31nm的收縮處。實驗數據顯示並無形成量子點接觸,樣品表現出類似約瑟芬結的特性,臨界電流在 40 -179 μA間,對應的約瑟芬能量EJ≅82 367 meV;樣品也表現出類似庫侖阻塞的特性,充電能量EC≅1.8 meV。
我們認為以聚焦離子束技術加工收縮結,能製作出具有EJ、EC的結構。而在未來的工作上可以提升製程精度以製作出量子點接觸。
In this work, we attempt to fabricate Josephson constrict junction by using focused ion beam technology. We fabricated samples with SQUID or SET architecture, and used the SQUID structure to control the magnetic flux, thereby affecting the phase difference of superconducting electric wave function; using the SET structure to observe whether this technology can create a structure with charging energy.
We fabricated constrict junctions with a length of 18-54nm and a width of 11-31nm.The measured data show that the samples does not form a quantum point contact. The samples exhibit Josephson-like behavior. The critical current is between 40-179 μA,corresponding to the Josephson energy E_J of about 82-367 meV. The samples also exhibit Coulomb blockade-like behavior, and the charging energy E_C of about 1.8 meV.
We believe that the Josephson constrict junction is processed by focused ion beam technology can fabricate structures with E_J and E_C.For future works, the precision of the fabrication can be improved to fabricate quantum point contact.
第一章 超導基本物理與約瑟芬效應 1
1.1 超導體之基本原理 1
1.2 約瑟芬穿隧結(Josephson tunnel junction) 3
1.2.1 約瑟芬穿隧結 3
1.2.2約瑟芬結的動力學(Dynamics of a Josephson Junction) 4
1.2.3電阻電容分流結模型(Resistively Capacitively Shunted Junction model)(RCSJ model) 4
1.3超導單電子電晶體(Superconducting Single Electron Transistor) 7
1.4直流超導量子干涉儀(DC-SQUID) 9
1.5研究動機 10
第二章 約瑟芬收縮結 13
2.1 約瑟芬收縮結(Josephson constrict junction) 13
2.2 安德列夫反射(Andreev reflection) 16
2.3 安德列夫束縛態(Andreev bound state) 18
2.4 超導量子點接觸(Superconducting quantum point contact) 20
2.5 文獻回顧 23
第三章 樣品設計與製造 25
3.1聚焦離子束系統(Focused ion-beam system)(FIB) 25
3.1.1聚焦離子束的原理及應用 25
3.1.2聚焦離子束製程與其他圖樣化製程的比較 30
3.1.3聚焦離子束製程對樣品製備的影響 33
3.2樣品構想 36
3.3樣品製作流程 37
第四章 實驗量測 46
4.1實驗架設 46
4.2實驗數據與討論 47
4.2.1在系統最低溫(T=0.03K)的基本特性 47
4.2.2不同溫度下的電流-電壓特性 51
4.2.3磁通量調控收縮結相位差 54
4.3結論 57
第五章 總結與未來展望 58
參考文獻 59
附錄A 63

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of Superconductivity”, Phys. Rev. Lett. 108, 1175 (1957).
[2] B. D. Josephson, “Possible new effects in superconductive tunneling”, Phys. Lett. 1, 251 (1962).
[3] G. Wendin and V. S. Shumeiko, “Quantum bits with Josephson junctions (Review Article)”, Low Temp. Phys. 33, 724 (2007).
[4] H. K. Onnes, “The Superconductivity of Mercury”, Comm. Phys. Lab. Univ., Leiden. 122 (1911).
[5] W. Meissner and R. Ochsebfeld, “Ein neuer Effekt bei Eintritt der Supraleitfähigkeit”, Sci. Nat. 21, 787 (1933).
[6] V. G. Vaks and A. I. Larkin, “On the application of the methods of superconductivity theory to the problem of the masses of elementary particles”, Sov. Phys. JETP. 13, 192 (1961).
[7] D. McCumber, “Effect of ac Impedance on dc Voltage-Current Characteristics of Superconductor Weak-Link Junctions”, J. Appl. Phys. 39, 3113 (1968).
[8] E. Enrico and F. Giazotto, “Superconducting Quantum Interference Single-Electron Transistor”, Phys. Rev. Appl. 5, 064020 (2016).
[9] J. Clarke and A. I. Braginski, “The SQUID Handbook(WILEY-VCH)”, (2004).
[10] A. Zazunov et al., “Andreev Level Qubit”, Phys. Rev. Lett. 90, 087003 (2003).
[11] P. G. De Gennes, “Boundary Effects in Superconductors”, Rev. Mod. Phys. 36, 225 (1964).
[12] I. Kulik and A. Omelyanchouk, “The Josephson effect in superconducting constrictions: Microscopic theory”, (1978).
[13] P. S. Walke, “Dayem bridge based nanoSQUID for high sensitive nanoscale applications”, (2010).
[14] T. Dirks et al., “Transport through Andreev Bound States in a Graphene Quantum Dot”, Nat. Phys. 7, 386 (2011).
[15] J-D. Pillet et al., “Andreev bound states in supercurrent-carrying carbon nanotubes revealed”, Nat. Phys. 6, 965 (2010).
[16] V. E. Shaternik et al., “Nonuniform current flow in superconductor - fullerene - superconductor junctions”, J. Low Temp. Phys. 32, 633 (2006).
[17] L. Bretheau et al., “Exciting Andreev pairs in a superconducting atomic contact”, Nature. 499, 312 (2013).
[18] R. W. Landauer, “Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction”. IBM J Res Dev. 1, 223 (1957).
[19] C. Foley and H. Hilgenkamp, “Why NanoSQUIDs are important : An introduction to the focus issue”, Semicond Sci Technol. 22, 064001 (2009).
[20] C. Granata et al., “Ultra High Sensitive Niobium NanoSQUID by Focused Ion Beam Sculpting”, J. Supercond. Nov. Magn. 28, 585 (2015).
[21] L. Hao et al., “Fabrication and Analogue Applications of nanoSQUIDs using Dayem Bridge Junctions”, IEEE J Sel Top Quantum Electron. 21, 2 (2015).
[22] N. De Leo et al., “Fabrication of high sensitivity 3D nanoSQUIDs based on a focused ion beam sculpting technique”, Supercond. Sci. Technol. 29, 094007 (2016).
[23] C H Wu et al., “Fabrication and characterization of high-Tc YBa_2 Cu_3 O_(7-x) nanoSQUIDs made by focused ion beam milling”, Nanotechnology. 19, 315304 (2008).
[24] E. Trabaldo et al., “Grooved Dayem Nanobridges as Building Blocks of High-Performance YBa_2 Cu_3 O_(7-δ) SQUID Magnetometers”, Nano Lett. 19, 1902 (2019).
[25] A. Chatterjee et al., “Shaping single atomic junctions in ultra-thin Ag structures by electromigration”, Appl. Phys. Lett. 113, 013106 (2018).
[26] J. Melngailis, “Focused ion beam technology and applications”, J. Vac. Sci. Technol., B. 5, 469 (1987).
[27] 謝永瑞,VLSI概論,全華文書,台灣,中華民國九十五年。
[28] 王建義,奈米技術手冊(精華版),全華出版社,台灣,中華民國九十四年。
[29] P. R. Choudhury, “Handbook of Microlithography, Micromachining, and Microfabrication”, (1997).
[30] Eun Byurl Cho et al., “Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array”, J Korean Phys Soc. 22, 262 (2013).
[31] A. Pan and Y. L. Wang, “Effects of focused gallium ion-beam implantation on properties of nanochannels on silicon-on-insulator substrates”, J. Vac. Sci. Technol., B. 23, 2288 (2005).
[32] ]H. Takeshi et al., “Relationship between Gallium Concentration and Resistivity of Gallium - Doped Czochralski Silicon Crystals: Investigation of a Conversion Curve”, Jpn J Appl Phys. 47, 8691 (2008).
[33] D. Gall, “Electron mean free path in elemental metals”, J. Appl. Phys. 119, 085101 (2016).
[34] T. Campbell et al., “Dynamics of Oxidation of Aluminum Nanoclusters using Variable Charge Molecular-Dynamics Simulations on Parallel Computers”, Phys. Rev. Lett. 82, 4866 (1999).
[35] J. Romijn et al., “Critical pair-breaking current in superconducting aluminum strips far below T_C”, Phys. Rev. B. 26, 3648 (1982).
[36] J. W. Lee et al., “Single crystalline aluminum nanowires with ideal resistivity”, Scr. Mater. 63, 1009 (2010).
[37] B. I. Johnson et al., “Using ellipsometry and x-ray photoelectron spectroscopy for real-time monitoring of the oxidation of aluminum mirrors protected by ultrathin MgF_2 layers”, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems II, (2017).
[38] J. Evertsson et al., “The thickness of native oxides on aluminum alloys and single crystals”. Appl. Surf. Sci. 349, 826 (2015).
[39] A. K. Elmurodov et al., “Phase-slip phenomena in NbN superconducting nanowires with leads”, Phys. Rev. B. 78, 214519 (2008).
[40] M. Tian et al., “Observation of Superconductivity in Granular Bi Nanowires Fabricated by Electrodeposition”, Nano Lett. 6, 2773 (2006).
[41] A. Bezryadin, “Quantum suppression of superconductivity in nanowires”, J. Phys. Condens. Matter. 20, 043202 (2008).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *