|
[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of Superconductivity”, Phys. Rev. Lett. 108, 1175 (1957). [2] B. D. Josephson, “Possible new effects in superconductive tunneling”, Phys. Lett. 1, 251 (1962). [3] G. Wendin and V. S. Shumeiko, “Quantum bits with Josephson junctions (Review Article)”, Low Temp. Phys. 33, 724 (2007). [4] H. K. Onnes, “The Superconductivity of Mercury”, Comm. Phys. Lab. Univ., Leiden. 122 (1911). [5] W. Meissner and R. Ochsebfeld, “Ein neuer Effekt bei Eintritt der Supraleitfähigkeit”, Sci. Nat. 21, 787 (1933). [6] V. G. Vaks and A. I. Larkin, “On the application of the methods of superconductivity theory to the problem of the masses of elementary particles”, Sov. Phys. JETP. 13, 192 (1961). [7] D. McCumber, “Effect of ac Impedance on dc Voltage-Current Characteristics of Superconductor Weak-Link Junctions”, J. Appl. Phys. 39, 3113 (1968). [8] E. Enrico and F. Giazotto, “Superconducting Quantum Interference Single-Electron Transistor”, Phys. Rev. Appl. 5, 064020 (2016). [9] J. Clarke and A. I. Braginski, “The SQUID Handbook(WILEY-VCH)”, (2004). [10] A. Zazunov et al., “Andreev Level Qubit”, Phys. Rev. Lett. 90, 087003 (2003). [11] P. G. De Gennes, “Boundary Effects in Superconductors”, Rev. Mod. Phys. 36, 225 (1964). [12] I. Kulik and A. Omelyanchouk, “The Josephson effect in superconducting constrictions: Microscopic theory”, (1978). [13] P. S. Walke, “Dayem bridge based nanoSQUID for high sensitive nanoscale applications”, (2010). [14] T. Dirks et al., “Transport through Andreev Bound States in a Graphene Quantum Dot”, Nat. Phys. 7, 386 (2011). [15] J-D. Pillet et al., “Andreev bound states in supercurrent-carrying carbon nanotubes revealed”, Nat. Phys. 6, 965 (2010). [16] V. E. Shaternik et al., “Nonuniform current flow in superconductor - fullerene - superconductor junctions”, J. Low Temp. Phys. 32, 633 (2006). [17] L. Bretheau et al., “Exciting Andreev pairs in a superconducting atomic contact”, Nature. 499, 312 (2013). [18] R. W. Landauer, “Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction”. IBM J Res Dev. 1, 223 (1957). [19] C. Foley and H. Hilgenkamp, “Why NanoSQUIDs are important : An introduction to the focus issue”, Semicond Sci Technol. 22, 064001 (2009). [20] C. Granata et al., “Ultra High Sensitive Niobium NanoSQUID by Focused Ion Beam Sculpting”, J. Supercond. Nov. Magn. 28, 585 (2015). [21] L. Hao et al., “Fabrication and Analogue Applications of nanoSQUIDs using Dayem Bridge Junctions”, IEEE J Sel Top Quantum Electron. 21, 2 (2015). [22] N. De Leo et al., “Fabrication of high sensitivity 3D nanoSQUIDs based on a focused ion beam sculpting technique”, Supercond. Sci. Technol. 29, 094007 (2016). [23] C H Wu et al., “Fabrication and characterization of high-Tc YBa_2 Cu_3 O_(7-x) nanoSQUIDs made by focused ion beam milling”, Nanotechnology. 19, 315304 (2008). [24] E. Trabaldo et al., “Grooved Dayem Nanobridges as Building Blocks of High-Performance YBa_2 Cu_3 O_(7-δ) SQUID Magnetometers”, Nano Lett. 19, 1902 (2019). [25] A. Chatterjee et al., “Shaping single atomic junctions in ultra-thin Ag structures by electromigration”, Appl. Phys. Lett. 113, 013106 (2018). [26] J. Melngailis, “Focused ion beam technology and applications”, J. Vac. Sci. Technol., B. 5, 469 (1987). [27] 謝永瑞,VLSI概論,全華文書,台灣,中華民國九十五年。 [28] 王建義,奈米技術手冊(精華版),全華出版社,台灣,中華民國九十四年。 [29] P. R. Choudhury, “Handbook of Microlithography, Micromachining, and Microfabrication”, (1997). [30] Eun Byurl Cho et al., “Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array”, J Korean Phys Soc. 22, 262 (2013). [31] A. Pan and Y. L. Wang, “Effects of focused gallium ion-beam implantation on properties of nanochannels on silicon-on-insulator substrates”, J. Vac. Sci. Technol., B. 23, 2288 (2005). [32] ]H. Takeshi et al., “Relationship between Gallium Concentration and Resistivity of Gallium - Doped Czochralski Silicon Crystals: Investigation of a Conversion Curve”, Jpn J Appl Phys. 47, 8691 (2008). [33] D. Gall, “Electron mean free path in elemental metals”, J. Appl. Phys. 119, 085101 (2016). [34] T. Campbell et al., “Dynamics of Oxidation of Aluminum Nanoclusters using Variable Charge Molecular-Dynamics Simulations on Parallel Computers”, Phys. Rev. Lett. 82, 4866 (1999). [35] J. Romijn et al., “Critical pair-breaking current in superconducting aluminum strips far below T_C”, Phys. Rev. B. 26, 3648 (1982). [36] J. W. Lee et al., “Single crystalline aluminum nanowires with ideal resistivity”, Scr. Mater. 63, 1009 (2010). [37] B. I. Johnson et al., “Using ellipsometry and x-ray photoelectron spectroscopy for real-time monitoring of the oxidation of aluminum mirrors protected by ultrathin MgF_2 layers”, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems II, (2017). [38] J. Evertsson et al., “The thickness of native oxides on aluminum alloys and single crystals”. Appl. Surf. Sci. 349, 826 (2015). [39] A. K. Elmurodov et al., “Phase-slip phenomena in NbN superconducting nanowires with leads”, Phys. Rev. B. 78, 214519 (2008). [40] M. Tian et al., “Observation of Superconductivity in Granular Bi Nanowires Fabricated by Electrodeposition”, Nano Lett. 6, 2773 (2006). [41] A. Bezryadin, “Quantum suppression of superconductivity in nanowires”, J. Phys. Condens. Matter. 20, 043202 (2008).
|