帳號:guest(18.191.176.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張政憲
作者(外文):Chang, Cheng-Hsien
論文名稱(中文):由增強電場加速生質柴油酯化反應之研究
論文名稱(外文):Study of Accelerating the Esterification Process of Biodiesel by Enhancing Electric Field
指導教授(中文):張存續
指導教授(外文):Chang, Tsun-Hsu
口試委員(中文):趙賢文
李義發
王明瑞
口試委員(外文):Chao, Hsien-Wen
Lee, Yi-Fa
Wang, Ming-Rui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:107022545
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:37
中文關鍵詞:生質柴油微波酯化反應
外文關鍵詞:BiodieselMicrowaveEsterification
相關次數:
  • 推薦推薦:0
  • 點閱點閱:505
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要探討如何以物理方法加速微波加熱的酯化反應。
目前已經有許多研究指出,使用微波作為加熱源可以有效提升酯化反應及轉酯化反應的反應速率,而如何使微波更有效地被反應物吸收,進而再提升酯化反應的反應速率為本論文所探討的課題。
許多研究是改良市售微波爐以研究微波加熱的酯化製程,缺點在於其反應物的量少,因此其結果是否能完全套用在大量的工業化製程,仍然是個疑慮,而有別於使用市售的微波爐,本論文的實驗計畫是與承德油脂合作,而實驗腔體是由趙賢文博士所設計出的第二代微波腔體,能夠放入較大量的反應物,再搭配2.45GHz的微波源及阻抗調節器,即可在1kW左右的微波功率加熱反應物,並可藉著阻抗調節器,使得進入腔體的微波有良好的阻抗匹配,以降低反射波的功率,讓微波能夠更有效地加熱反應物。
本論文的目的在透過加強反應物中的電場,藉以提高酯化反應的反應速率,本論文的實驗方法有二:(1) 於反應物中加入奈米粒子、(2) 在實驗腔體中加入尖金屬柱陣列;(1):於反應物中加入奈米銀或是奈米氧化鋁,再透過微波加熱於200℃下反應,透由顆粒半徑小及等效介電系數高的特性,加強電場在反應物的強度,但其結果與單純微波加熱的結果相似,其原因可能是奈米粒子間會團聚的緣故,使得聚集電場的效果不那麼明顯。(2):在實驗腔體中加入尖金屬柱陣列,其目的是藉由尖金屬柱增強電場在反應物中的強度,此方法在5個小時內使酸價(Acid Value)低於3mg KOH/g,但無尖金屬柱陣列需要6個小時才會達到相同結果。由此可證於腔體中加入尖金屬柱陣列對於提升反應速率相當有效。
This thesis mainly discuss how to accelerate the esterification reaction with microwave heating by the means of physical methods.
Nowadays, many researches have indicated that using microwave as heating resource can promote the reaction rate of esterification and transesterification. Therefore, how to make microwave more efficiently absorbed by reactants and further enhance the reaction rate of esterification reaction is the subject of this thesis.
Many researches modified the commercial microwave oven to study the esterification process with microwave heating, but the disadvantage of it was small amount of the reactants. Therefore, whether the results can be applied to a large amount of industrial production is still a doubt. Different from using commercial microwave oven, the experimental program of this thesis was to cooperate with Chant Oil Company and the experimental cavity was
2nd generation microwave cavity designed by Dr. Hsien-Wen Chao, which can place large amount of reactants and it’s equipped with 2.45GHz microwave source and impedance adjuster. The reactants can be heated at microwave power about 1kW and the impedance adjuster makes the incident microwave have good impedance to reduce the power of reflected wave, so the microwave can heat the reactants more efficiently.
This thesis aims to increase the reaction rate of esterification by enhancing the electric field in the reactants. The experimental methods in this thesis are as follows: (1) Adding nanoparticles to the reactants (2) Displaying the pointed metal pillar array to the cavity.
(1): Add nano-silver or nano-Alumina to the reactants and react by microwave heating at 200℃. In order to enhance the electric field in the reactants by the propertied of the tiny radius of the particles and high equivalent permittivity. However, the results were similar to the result of microwave heating without nanoparticles. The reason may be that the nanoparticles would agglomerate.
The agglomeration increasing the curvature radius made the effect of concentrating electric field be not significant. (2): The purpose of displaying pointed metal pillar array to the experimental cavity was to enhance the electric field in the reactants. This method took 5hr to reduce the acid value lower than 3mg KOH/g, but it took 6hr to achieve the same result without pointed metal pillar array. It can proof that displaying the pointed metal pillar array to the experimental cavity is effective to increase the reaction rate.
摘要 i
Abstract ii
致謝 iv
目錄 v
一、緒論 1
1.1 前言 1
1.2生質柴油的製程介紹 3
1.2-1生質柴油之特性及製程介紹 3
1.2-2轉酯化反應 4
1.2-3酯化反應 6
1.2-4 微波加熱對實驗的影響 7
1.3微波 8
1.3-1微波簡介 8
1.3-2微波產生的原理 9
1.3-3微波加熱的優點 9
1.3-4 微波加熱的機制 10
1.4 介電係數 11
1.5 酯化反應反應物的介電係數 12
二、腔體設計 13
2.1 腔體模擬 13
2.2第一代腔體 13
2.2-1第一代腔體設計 13
2.2-2 第一代腔體的討論 14
2-3第二代腔體 15
2-3-1 第二代腔體設計 15
2.3-2 第二代腔體的討論 19
三、奈米粒子 19
3.1 奈米粒子簡介 19
3.2表面效應 19
3.3粒子於微波場下的電場模擬圖 20
四、尖端的聚場效應 21
五、實驗方法及實驗設備 22
5.1 實驗方法 22
5.1-1 實驗原料 22
5.1-2 實驗原理 23
5.1-3 分析方法 23
5.2 實驗設備 24
5.2-1 傳統加熱設備 24
5.2-2 微波加熱設備 25
5.3 實驗方法 27
5.3-1 傳統加熱 27
5.3-2 傳統加熱加入奈米粒子 27
5.3-3 微波加熱 28
5.3-4 微波加熱中加入奈米粒子 28
5.3-5 微波加熱中放入金屬柱陣列 28
六、實驗結果與討論 29
6.1樣品圖 29
6.2 加入奈米銀 31
6.3加入奈米氧化鋁 31
6.4 加入金屬柱陣列32
6.5 不同金屬柱的排列 34
七、 結論 35
參考文獻 36
[1] 生質燃料排放引質疑未燒完乙醇易轉化為乙醛. (2011).
https://ghgregistry.epa.gov.tw/ghg_rwd/Main/Information/Information_3_detail?r_id=2168
[2] Abbaszadeh Mayvan, A., Ghobadian, B., Omidkhah, M., & Najafi, G.
(2012). Current biodiesel production technologies: A comparative review.
Energy Conversion and Management, 63, 138-148.
[3] Sheehan, J., Camobreco, V., Duffield, J., Graboski, M., & Shapouri, H.
(1998). An Overview of Biodiesel and Petroleum Diesel Life Cycles.
[4] A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions.
(2002). https://archive.epa.gov/ncea/biofuels/web/pdf/p02001.pdf
[5] Biodiesel Industry Overview & Technical Update.
https://www.biodiesel.org/docs/default-source/fact-sheets/biodiesel-industry-
and-technical-overview.pdf?sfvrsn=194c4fa3_16
[6] Schwenke, A. M., Hoeppener, S., & Schubert, U. S. (2015). Synthesis and
Modification of Carbon Nanomaterials utilizing Microwave Heating. Advanced
Materials, 27(28), 4113-4141.
[7] Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food
processing—A review. Food Research International, 52(1), 243-261.
[8] Wang, Y., Gao, W., Dong, Y., Dong, S., Yu, X., & Li, X. (2018, 29 July-1
Aug. 2018). High efficiency rectifier design at 5.8 GHz with high input power
for microwave power transmission application. 2018 International Applied
Computational Electromagnetics.
[9] Nguyen, H. C., Wang, F.-M., Dinh, K. K., Pham, T. T., Juan, H.-Y.,
Nguyen, N. P., Ong, H. C., & Su, C.-H. (2020). Microwave-Assisted
Noncatalytic Esterification of Fatty Acid for Biodiesel Production: A Kinetic
Study. Energies, 13(9).
[10] 沈胤亨, “生質柴油製成簡介”.
http://ebooks.lib.ntu.edu.tw/1_file/moeaidb/012647/gpt002.pdf
[11] Nomanbhay, S., & Ong, M. Y. (2017). A Review of Microwave-Assisted
Reactions for Biodiesel Production. Bioengineering (Basel, Switzerland), 4(2),
57.
[12] Watanabe, Y., Shimada, Y., Sugihara, A., & Tominaga, Y. (2001).
Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed
bioreactor. Journal of the American Oil Chemists' Society, 78(7), 703-707.
[13]Saka, S., & Kusdiana, D. (2001). Biodiesel fuel from rapeseed oil as
prepared in supercritical methanol. Fuel, 80(2), 225-231.
[14] El Sherbiny, S. A., Refaat, A. A., & El Sheltawy, S. T. (2010). Production
of biodiesel using the microwave technique. Journal of Advanced Research,
1(4), 309-314.
[15] Hsiao, M., Liao, P., & Hsu, H. (2012, 4-6 June 2012). Microwave- and
Ultrasound-Enhanced Production of Biodiesel from Waste Cooking Oil. 2012
International Symposium on Computer, Consumer and Control,
[16] Wang, Y., Pengzhan Liu, S. O., & Zhang, Z. (2007). Preparation of
biodiesel from waste cooking oil via two-step catalyzed process. Energy
Conversion and Management, 48(1), 184-188.
[17] The Electromagnetic Spectrum. (2020, November 6). Retrieved August 5,
2021, from https://phys.libretexts.org/@go/page/4453
[18] Ian Duster. Resonant Cavity Magnetron Diagram.png in EnglishWikipedia
[19] Matli, P. R., Shakoor, R. A., Amer Mohamed, A. M., & Gupta, M. (2016).
Microwave Rapid Sintering of Al-Metal Matrix Composites: A Review on the
Effect of Reinforcements, Microstructure and Mechanical Properties. Metals,
6(7), 143. https://www.mdpi.com/2075-4701/6/7/143
[20] 科安知識庫 用物理技術突破化學瓶頸 — 為什麼微波能提高反應速率?
[21] Melo-Júnior, C. A. R., Albuquerque, C. E. R., Fortuny, M., Dariva, C.,
Egues, S., Santos, A. F., & Ramos, A. L. D. (2009). Use of Microwave
Irradiation in the Noncatalytic Esterification of C18 Fatty Acids. Energy &
Fuels, 23(1), 580-585.
[22] KAB Electro Acoustics https://www.kabusa.com/Dilectric-Constants.pdf
[23] 陳勝富,“微波化學製程腔體設計與驗證-以生質柴油為例”國立清華大學物理先進光源科技學位學程碩士論文.(2018)
[24] 蘇弈維, “微波加速生質柴油之酯化反應研究.”國立清華大學物理研究所光電組碩士論文.(2019)
[25] 許弘竣, “2.45 GHz微波加速生質柴油之酯化反應研究”國立清華大學物理研究所光電組碩士論文.(2020)
[26] 陳振平, “Poly(fluorene-co-pyridine) / 金奈米顆粒之奈米複合材料的合成與性質分析.”國立交通大學材料科學與工程學系所碩士論文(2006)
[27] 莊萬發(1994) 超微粒子理論與應用 復漢出版社。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *