帳號:guest(3.14.252.21)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王耀賢
作者(外文):Wang, yao-xian.
論文名稱(中文):鈷摻雜1T二硫化鉬置於二氧化鈦薄膜 以增加產氧反應催化活性之研究
論文名稱(外文):Co-doped 1T-MoS2 Nanosheets on TiO2 Thin Films for Oxygen Evolution Reaction
指導教授(中文):蘇雲良
指導教授(外文):Soo, Yun-Liang
口試委員(中文):湯茂竹
翁世璋
口試委員(外文):Tang, Mau-Tsu
Weng, Shih-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:107022544
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:65
中文關鍵詞:二硫化鉬二氧化鈦加產氧反應
外文關鍵詞:1TMoS2TiO2anatase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:29
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來許多研究指出少層數二硫化鉬在催化產氧方面擁有良好的發展潛力,且二氧化鈦具有光崔化特性。在本論文中我們疊合二硫化鉬與二氧化鈦兩種材料,研究MoS2/TiO2樣品並期待其可提高產氧效果。
在本研究中我們使用水熱法製備出二氧化鈦薄膜在FTO基板上,同時用離子插層法製作出少層數的二硫化鉬。並利用滴定法將二硫化鉬沉積在二氧化鈦薄膜上形成MoS2/TiO2的樣品。最後將上層的二硫化鉬摻雜不同的過度金屬元素以提高產氧的效率。使用拉曼光譜(Raman Spectroscopy)峰值位置判別可以得知我們做出的樣品為1T的二硫化鉬結構和銳鈦礦相(anatase)型態的二氧化鈦薄膜。由於能隙大小對光催化反應非常的重要。因此利用紫外-可見光光譜(Ultraviolet-visible spectroscopy, UV-vis)來量測樣品能隙大小。為了確定摻雜後的結構變化,我們用X光吸收精密結構數據的擬合摻雜過度金屬元素在二硫化鉬上的結構。應用X-ray Diffraction判別是否為銳鈦礦(anatase)晶體結構同時運用Sherrer equation計算出銳鈦礦顆粒大小為7nm。
在產氧分析上我們使用三電極系統電化學分析法,透過線性伏安法(Linear sweep voltammetry)與電化學阻抗頻譜(Electrochemical Impedance Spectroscopy, EIS)來觀察其電化學特性。並且使用鹵素燈的光譜模擬太陽光譜,觀察樣品在照光前後的電流變化。證明摻雜過度金屬元素的二硫化鉬覆蓋在二氧化鈦上時有助於提升產氧催效率。
Recently, few-layered Molybdenum disulfide (MoS2) has received considerable attention due its potential application as a catalyst for oxygen production. On the other hand, titanium dioxide (TiO2) is widely recognized as a good photocatalyst. In this research, we combined them together and studied the synergetic effect for enhanced photocatalytic oxygen production.
Titanium dioxide (TiO2) thin films were grown on their substrates using a hydrothermal method. Few-layered MoS2 was prepared by the ion intercalation method. The few-layered MoS2 was then deposited onto TiO2 thin film using a titration method to form the MoS2/TiO2 sample. Cobalt atoms were doped into the MoS2/TiO2 sample by dipping the thin films sample into cobalt chloride solutions. As determined from x-ray diffraction measurements, our thin film samples exhibit anatase polycrystalline TiO2 structure. The crystallite size is around 7 nm as estimated from the XRD data using Scherrer equation. Raman Spectroscopy has been used to identify the 1T molybdenum disulfide structure and anatase TiO2 structure of our samples. Ultraviolet-visible spectroscopy (UV-vis) measurements have been carried out to measure the energy gap of the samples. The XANES and EXAFS analyses were used to probe the valence state and the local environment of the dopant atoms, respectively. Linear sweep voltammetry and Electrochemical Impedance Spectroscopy measurements using a Tripolar electrochemical analyzer were carried out to estimate the electrochemical characteristics of our sample. A halogen lamp was used to mimic the solar light in the photocatalytic activity test. Our experimental results clearly demonstrate that 1T-MoS2/TiO2 has higher catalytic activity than TiO2. With cobalt doping, the catalytic activity can be further enhanced.
目錄
摘要 I
Abstract II
致謝 Ⅲ
章節目錄 Ⅳ
圖表目錄 Ⅶ
第一章 序論 1
1-1 研究動機 1
1-2 論文簡介 2
第二章 文獻回顧 3
2-1 二氧化鈦材料簡介 3
2-2 二氧化鈦結構 4
2-3 二硫化鉬材料介紹 4
第三章 實驗方法與原理 6
3-1拉曼光譜(Raman Spectroscopy) 6
3-2紫外-可見光光譜(Ultraviolet–visible spectroscopy; UV-Vis) 7
3-3 X光繞射(X-Ray Diffraction;XRD) 8
3-3-1布拉格定律(Bragg Diffraction) 8
3-3-2 Scherrer equation 9
3-4X光吸收精細結構(X-ray absorption fin structure;XAFS) 11
3-5電化學分析法(electrochemical analysis) 15
3-5-1三電極系統(three-electrode system) 15
3-5-2線性伏安法(Linear sweep voltammetry) 16
3-5-3 循環伏安法(Cyclic Voltammetry ) 18
3-5-4電化學阻抗頻譜(Electrochemical Impedance Spectroscopy) 20

第四章 樣品製備與實驗流程 25
4-1 TiO2樣品製備 25
4-1-1 水熱合成法(hydrothermal synthesis method) 25
4-1-2 TiO2實驗藥劑 25
4-1-3 TiO2製備步驟 26
4-2 MoS2樣品製備 27
4-2-1離子插層法 27
4-2-2 MoS2實驗藥劑 28
4-2-3 MoS2製備步驟 28
4-3 MoS2/ TiO2樣品製備 29
4-4樣品製備流程圖 30
第五章 數據分析與討論 31
5-1拉曼光譜分析(Raman spectroscopy) 31
5-1-1拉曼光譜分析二氧化鈦結構 31
5-1-2拉曼光譜分析二硫化鉬結構 33
5-2紫外-可見光光譜(Ultraviolet-visible spectroscopy) 37
5-2-1紫外-可見光光譜分析二氧化鈦 31
5-2-2紫外-可見光光譜分析二硫化鉬 39
5-2-3紫外-可見光光譜分析MoS2/TiO2 39
5-3 X光繞射分析(X-Ray Diffraction;XRD) 43
5-4 X光吸收精細結構分析(X-ray absorption fin structure;XAFS) 45
5-4-1 X光吸收近邊緣結構(X-ray Absorption Near-Edge Structure;
XANES) 45
5-5-2 延伸X光精密吸收光譜(extended x-ray absorption fine
structure;EXAFS) 45

5-5電化學分析(electrochemical analysis) 48
5-5-1線性掃描伏安法 48
5-5-2電化學阻抗頻譜 51
5-5-3光催化實驗 54
第六章 結果與討論 61
6-1結論 61
6-2未來展望 61
參考文獻 62
參考文獻
第一章
[1] Gang Liu, Hua Gui Yang, Jian Pan, Yong Qiang Yang, Gao Qing (Max) Lu and Hui-Ming Cheng, J. Am. Chem. Soc. 114,9559−9612 (2014)
[2] V.ANTONUCCI, E. P ASSALACOUA, P. L. ANTONUCCI and N. GIORDANO, Int. J. Hydrogen Energy, Vol. 10, No. 9, pp. 585-590 (1985)
[3] K. S. Novoselov,1 A. K. Geim,1 S. V. Morozov,2 D. Jiang,1 Y. Zhang, 1 S. V. Dubonos,2 I. V. Grigorieva,1 A. A. Firsov2, SCIENCE 306,666-669 (2004)
第二章
[4] David O. Scanlon1, CharlesW. Dunnill2, John Buckeridge1, Stephen A. Shevlin1,Andrew J. Logsdail1,Scott M.Woodley1, C. Richard A. Catlow1, Michael. J. Powell2 Robert G. Palgrave2, Ivan P. Parkin2, GraemeW.Watson3, ThomasW. Keal4, Paul Sherwood4, AronWalsh5 and Alexey A. Sokol , NATURE MATERIALS j VOL (2013)
[5] Min Choa, Hyenmi Chungb, Wonyong Choic, Jeyong Yoon, Elsevier 0043-1354 (2003)
[6] Y. L. Soo, G. Kioseoglou,S. Kim, Y. H. Kao, P. Sujatha Devi, John Parise, R. J. Gambino, and P. I. Gouma ,Appl. Phys. Lett. 81, 655 (2002)
[7] Quang Duc Truong1,Thi Hang Le, Jen-Yu Liu, Cheng-Chi Chung,Yong-Chien Ling, Elsevier 0926-860X (2012)
[8] Dorian A. H. Hanaor • Charles C. Sorrell, J Mater Sci 855–874 (2010)
[9] Dorian A. H. Hanaor • Charles C. Sorrell, Mater Sci 855–874 (2011)
[10] Nazanin Rahimi, Randolph A. Pax and Evan MacA. Gray, Progress in Solid State Chemistry, 30013-9 (2016)
[11] Valeria Nicolosi, Manish Chhowalla, Mercouri G. Kanatzidis, Michael S. Strano,
Jonathan N. Coleman, SCIENCE 340, 1226419(2013)
[12] Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jonghwan Kim,Chi-Yung Chim, Giulia Galli, and Feng Wang, Nano Lett , 1271–1275 (2010)
[13] Ahmad Monshi, Mohammad Reza Foroughi, Mohammad Reza Monshi, SciRes,154-160(2012)
[14] Masakazu Anpo, Takahito Shima, Sukeya Kodama, and Yutaka Kubokawa, American Chemical Society, 0022-3654(1987)
第三章
[15] Department of Chemistry and Geology, Clemson University, Clemson, SC 29631(1983)
第四章
[16] Jiaguo Yu, Jianfeng Xiong, Bei Cheng, Chinese Journal of Catalysis. 745-749 (2005).
[17] Xiaobin Fan, Pengtao Xu, Dekai Zhou, Yifan Sun, Yuguang C. Li, Minh An T. Nguyen, Mauricio Terrones, and Thomas E. Mallouk, American Chemical Society ,5956−5960(2015)
[18] Qianqian Lia, Zhenpeng Yaoa, Jinsong Wua,b, Sagar Mitrac, Shiqiang Haoa, Tuhin Subhra Sahuc, Yuan Lia,b, Chris Wolvertona Vinayak P. Dravida, Elsevier ,2211-2855(2017)
第五章
[19] Dennis Y. C. Leung, Xianliang Fu, Cuifang Wang, Meng Ni, Michael K. H. Leung Xuxu Wang, and Xianzhi Fu, ChemSusChem, 681 – 694(2010)
[20] Toshiaki Ohsaka, Fujio Izumi and Yoshinori Fujiki, JOURNAL OF RAMAN SPECTROSCOP, VOL. 7, NO.6(1978)
[21] Bayerisches Geologisches Landesamt, Concordiastrasse, American Mineralogist, 203-206(1997)
[22] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman and Michael S. Strano1, NATURE NANOTECHNOLOGY, 1038(2012)
[23] S. Jimenez Sandoval, D. Yang, R. F. Frindt, and J. C. Irwin, American Physical Society,3956-3962(1991)
[24] Biswanath Chakraborty,a H. S. S. Ramakrishna Matte , A. K. Sooda,c and C. N. R. Raob, J. Raman Spectrosc., DOI 10.1002(2012)
[25] Bruno R. Carvalho, Leandro M. Malard, Juliana M. Alves, Cristiano Fantini, and Marcos A. Pimenta, American Physical Society, 136403(2015)
[26] Xiaoping Liang,Ziwei Lian,Jing Zhu, Kuo Men,and Feng Wei, AIP Advances, 015058(2020)
[27] Shangli Shi, Zhuxing Sunand Yun Hang Hu, J. Mater. Chem. A, 2018, 23932–23977(2018)
[28] Yuhang Qi,a Nan Wang,a Qun Xu, Hongxiang Li,a Pengshang Zhou,a Xin Lub and Guoqiang Zhaob, The Royal Society of Chemistry(2015)
[29] Yuxi Pi, Zhen Li, Danyun Xu, Jiapeng Liu, Yang Li, Fengbao Zhang, Guoliang Zhang, Wenchao Peng and Xiaobin Fan, American Chemical Society,5175−5182 (2017)
[30] Yu Hao, Ya-Tong Wang, Li-Chun Xu, Zhi Yang, Rui-ping Liu, Xiu-yan Li, Elsevier ,0169-4332 (2018)
[31] C. O. Ayieko1, R. J. Musembi1, S. M. Waita1, B. O. Aduda1, P. K. Jain, International Journal of Energy Engineering , 67-72,(2012)
[32] Dezhi Wang,ab Xiangyong Zhang,a Siyuan Bao,a Zhongting Zhang,a Hao Fei and Zhuangzhi Wu, J. Mater. Chem , 2681–2688 (2017)
[33] Qing Tang and De-en Jiang, American Chemical Society , 4953−4961 (2016)
[34] J. Mo , S. Wu , T.H.M. Lau , R. Kato , K. Suenaga , T.-S. Wu , Y.-L. Soo , J.S. Foord, S.C.E. Tsang, Materials Today Advances , 100020 (2019)
[35] Yuxi Pi, Zhen Li, Danyun Xu, Jiapeng Liu, Yang Li, Fengbao Zhang, Guoliang Zhang, Wenchao Peng, and Xiaobin Fan, American Chemical Society , 5175−5182 (2017)
[36] Lingxia Zheng , Sancan Han , Hui Liu , Pingping Yu , and Xiaosheng Fang, small , 1527–1536 (2016)
[37] Syed Z. Islam,Allen Reed, Namal Wanninayake,Doo Young Kim, and Stephen E. Rankin, American Chemical Society, 14069−14081 (2016)

(此全文20250910後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *