帳號:guest(3.15.208.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林辰儒
作者(外文):Lin, Chen-Ru
論文名稱(中文):氮化鈦薄膜在表面增強拉曼散射中的應用
論文名稱(外文):Application of Titanium Nitride Film in Surface Enhanced Raman Spectroscopy
指導教授(中文):果尚志
指導教授(外文):Gwo, Shangjr
口試委員(中文):安惠榮
吳致盛
口試委員(外文):Ahn, Hyeyoung
Wu, Jhih-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:107022530
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:50
中文關鍵詞:氮化鈦表面電漿子表面增強拉曼散射奈米結構
外文關鍵詞:TiNSurface PlasmonsSurface Enhanced Raman Spectroscopynanostructure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:212
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
自西元1973年Martin Fleischmann首次在粗糙銀的表面發現表面增強拉曼散射後,從此引起人們對表面增強拉曼散射研究的興趣,使表面增強散射及化學合成奈米顆粒之相關的研究與日俱增,西元2015年本實驗室利用銀膠體粒子實現定量且大面積的單分子表面增強拉曼散射測量。雖然表面增強拉曼散射可以增強拉曼散射的強度,但表面增強拉曼散射使用的材料大部分是使用銀、金等貴金屬,有化學穩定性差、價格昂貴等缺點,所以需要尋找可取代金、銀等傳統貴金屬的電漿子材料改善此缺點,由於氮化鈦的化學穩定性、熔點高且具有生物相容性等優勢,因此氮化鈦成為可替代的電漿子材料之一。
本論文使用實驗室的電漿輔助式分子束磊晶系統成長的氮化鈦薄膜來製作表面增強拉曼散射基板,再使用電子束微影法來進行氮化鈦薄膜的加工製成氮化鈦的奈米結構。最後將亞甲基藍與甲醇配成不同濃度的溶液,將調配好的溶液旋塗在氮化鈦奈米結構與藍寶石基板上,再對基板上的亞甲基藍分子進行表面增強拉曼散射的測量。測量結果分析後得到氮化鈦奈米結構的增強因子可達2.2×〖10〗^2倍,若只考慮氮化鈦奈米結構與氮化鈦薄膜的增強效果的話,最大增強因子為19倍。計算結果得到氮化鈦奈米結構與氮化鈦基板相比的增強作用增強不大,其原因有三,其一是氮化鈦薄膜表面本身特有的三角錐形的奈米結構有拉曼訊號增強的效果;其二由共振拉曼散射得知分析物的共振波長與激發波長相匹配的話,會使得拉曼訊號增強,而氮化鈦奈米結構的共振波長以及表面增強拉曼散射測量的激發波長與亞甲基藍的強吸收波長的位置不匹配,導致拉曼訊號增強效果不高;其三是氮化鈦奈米結構的設計為倒置的,由FDTD模擬可以看出來正結構的增強效果高於倒結構,其原理為正結構的每個凸起來的部分可以視為單個電偶極,當結構靠的足夠近時會產生LSP耦合導致電場增強效果變高。若要改善其增強因子,由FDTD得知將氮化鈦奈米結構設計成2D的正光柵結構且將光柵的寬度變大,電場是有增強的趨勢的,並使用與分析物的共振波長相近的雷射進行表面增強拉曼散射的激發。總而言之使用電漿輔助式分子束磊晶系統成長的氮化鈦,透過電子束微影等蝕刻方法製造的氮化鈦奈米結構對表面增強拉曼散射是個有潛在研究價值的方法。
Since Martin Fleischmann first discovered Surface-enhanced Raman scattering on a rough Silver surface in 1973, people have been interested in the research of Surface-enhanced Raman scattering, and the research on Surface-enhanced scattering and chemical synthesis of nanoparticle has been increasing day by day. In 2015, our laboratory used Silver colloidal particles to achieve quantitative and large-area single-molecule Surface-enhanced Raman scattering measurement. Although Surface-enhanced Raman scattering can increase the intensity of Raman scattering, most of the materials used in Surface-enhanced Raman scattering use precious metals such as Silver and Gold, which have disadvantages such as poor chemical stability and high price. Therefore, it is necessary to find a substitute for Gold and Silver. Plasmonic materials such as traditional precious metals improve this shortcoming. Due to the chemical stability, high melting point and biocompatibility of Titanium Nitride, Titanium Nitride has become one of the alternative plasmonic materials.
This paper uses the Titanium Nitride film grown by the Plasma-Assisted Molecular Beam Epitaxy system in the laboratory to make the Surface-enhanced Raman scattering substrate, and then uses Electron beam lithography to process the Titanium Nitride film into Titanium Nitride nano structure. Finally, Methylene blue and Methanol are prepared into solutions of different concentrations, and then the prepared solution is spin-coated on the Titanium Nitride nanostructure and sapphire substrate, and then the Surface-enhanced Raman scattering measurement of the Methylene blue molecules on the substrate is performed. After analyzing the measurement results, the enhancement factor of the titanium nitride nanostructure can be up to 2.2×〖10〗^2 times. If only the enhancement effect of the Titanium Nitride nanostructure and the Titanium Nitride film is considered, the maximum enhancement factor is 19 times. The calculation results show that the enhancement effect of the titanium nitride nanostructure is not much stronger than that of the titanium nitride substrate. There are three reasons. One is that the unique triangular pyramidal nanostructure on the surface of the titanium nitride film has Raman signal enhancement. The second is that if the resonance wavelength of the analyte matches the excitation wavelength, the Raman signal will be enhanced, and the resonance wavelength of the titanium nitride nanostructure and the excitation of the surface enhanced Raman scattering measurement The wavelength does not match the position of the strong absorption wavelength of methylene blue, resulting in low Raman signal enhancement effect. The third is that the design of the titanium nitride nanostructure is inverted. It can be seen from the FDTD simulation that the enhancement effect of the positive structure is higher than that of the inverted structure. The principle is that each raised part of the positive structure can be regarded as a single electric dipole. , When the structure is close enough, LSP coupling will occur and the electric field enhancement effect will become higher. To improve the enhancement factor, it is known from FDTD that the titanium nitride nanostructure is designed as a 2D positive grating structure and the width of the grating is enlarged, and the electric field has a tendency to increase. In addition, a laser with a resonance wavelength similar to that of the analyte is used for surface-enhanced Raman scattering excitation to improve the enhancement factor of its titanium nitride nanostructure. All in all, the Titanium Nitride grown using PlasmaAssisted Molecular Beam Epitaxy system, and the Titanium Nitride nanostructure produced by etching methods such as Electron beam lithography is a method of potential research value for Surface-enhanced Raman scattering.
目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 x
第1章 研究動機及文獻回顧 1
1.1 研究動機 1
1.2 氮化鈦(Titanium Nitride, TiN)介紹 2
1.3 表面增強拉曼散射(Surfaceenhanced Raman spectroscopy, SERS)發展 4
第2章 實驗原理 7
2.1 表面電漿子(Surface Plasmons) 7
2.2 品質因子(Quality factor, Q) 11
2.3 拉曼散射(Raman scattering)原理 14
2.4 表面增強拉曼散射(Surfaceenhanced Raman spectroscopy, SERS)原理 15
第3章 實驗架構 18
3.1 實驗基板成長儀器介紹 18
3.2 實驗基板介紹 20
3.3 數值模擬 23
3.4 氮化鈦奈米結構製程 25
3.5 反射光譜以及拉曼光譜測量儀器介紹 28
3.6 表面增強拉曼散射檢測的分子介紹 31
3.7 實驗步驟 33
第4章 實驗結果與討論 35
4.1 氮化鈦結構的反射光譜 35
4.2 氮化鈦結構的表面增強拉曼散射光譜 37
4.3 氮化鈦奈米結構與藍寶石基板的拉曼光譜比較 44
第5章 結論 46
參考資料 48
[1.] Boltasseva, A. and V.M. Shalaev, All that glitters need not be gold. Science. 347(6228). 1308-1310 (2015).
[2.] Igasaki, Y., et al., STRUCTURE AND ELECTRICAL-PROPERTIES OF TITANIUM NITRIDE FILMS. Japanese Journal of Applied Physics. 17(1). 85-96 (1978).
[3.] Richardson, C.J.K., et al., Low-loss superconducting titanium nitride grown using plasma-assisted molecular beam epitaxy. Journal of Applied Physics. 127(23). 7 (2020).
[4.] Naik, G.V., et al., Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Optical Materials Express. 2(4). 478-489 (2012).
[5.] Guo, W.P., et al., Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold. ACS Photonics. 6(8). 1848-1854 (2019).
[6.] Guler, U., et al., Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles. Nano Letters. 13(12). 6078-6083 (2013).
[7.] Guler, U., et al., Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications. Nanophotonics. 4(3). 269-276 (2015).
[8.] Briggs, J.A., et al., Fully CMOS-Compatible TiN Nanoantennas, in 2016 Conference on Lasers and Electro-Optics. 2016, Ieee: New York.
[9.] Birkholz, M., et al., Ultrathin TiN Membranes as a Technology Platform for CMOS-Integrated MEMS and BioMEMS Devices. Advanced Functional Materials. 21(9). 1652-1656 (2011).
[10.] Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters. 26(2). 163-166 (1974).
[11.] Jeanmaire, D.L. and R.P. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 84(1). 1-20 (1977).
[12.] Kneipp, K., et al., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Physical Review Letters. 78(9). 1667-1670 (1997).
[13.] Stöckle, R.M., et al., Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters. 318(1). 131-136 (2000).
[14.] Chen, H.-Y., et al., Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale. Journal of the American Chemical Society. 137(42). 13698-13705 (2015).
[15.] Zhao, F., et al., TiN Nanorods as Effective Substrate for Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C. 123(48). 29353-29359 (2019).
[16.] Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry. 58. 267-297 (2007).
[17.] Jackson, J.D., Classical electrodynamics. 1999, American Association of Physics Teachers.
[18.] Wang, F. and Y.R. Shen, General Properties of Local Plasmons in Metal Nanostructures. Physical Review Letters. 97(20). 206806 (2006).
[19.] McPeak, K.M., et al., Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics. 2(3). 326-333 (2015).
[20.] Zong, C., et al., Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chemical Reviews. 118(10). 4946-4980 (2018).
[21.] McMahon, J.M., et al., Modeling the Effect of Small Gaps in Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C. 116(2). 1627-1637 (2012).
[22.] Hao, E. and G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. The Journal of chemical physics. 120(1). 357-366 (2004).
[23.] Le Ru, E.C., et al., Surface enhanced Raman scattering enhancement factors: a comprehensive study. Journal of Physical Chemistry C. 111(37). 13794-13803 (2007).
[24.] Cho, A.Y. and J.R. Arthur, Molecular beam epitaxy. Progress in Solid State Chemistry. 10. 157-191 (1975).
[25.] HASEGAWA, S., REFLECTION HIGH-ENERGY ELECTRON DIFFRACTION. (2012).
[26.] Gaudette, N.F. and J.W. Lodge, Determination of methylene blue and leucomethylene blue in male and female Fischer 344 rat urine and B6C3F1 mouse urine. Journal of analytical toxicology. 29(1). 28-33 (2005).
[27.] Salimi, A. and A. Roosta, Experimental solubility and thermodynamic aspects of methylene blue in different solvents. Thermochimica Acta. 675. 134-139 (2019).
[28.] Pahang, F., et al., Fluorescence properties of methylene blue molecules coupled with metal oxide nanoparticles. OSA Continuum. 3(3). 688-697 (2020).
[29.] Naujok, R.R., R.V. Duevel, and R.M. Corn, Fluorescence and Fourier Transform surface-enhanced Raman scattering measurements of methylene blue adsorbed onto a sulfur-modified gold electrode. Langmuir. 9(7). 1771-1774 (1993).
[30.] Xu, Z., et al., Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy. Journal of Nanophotonics. 5(1). 053526 (2011).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *