帳號:guest(3.128.173.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林佳瑩
作者(外文):Lin, Chia-Ying
論文名稱(中文):U(1)神經網絡
論文名稱(外文):U(1) Neuronal Network
指導教授(中文):林秀豪
指導教授(外文):Lin, Hsiu-Hau
口試委員(中文):黃文敏
羅中泉
吳國安
口試委員(外文):Huang, Wen-Min
Lo, Chung-Chuan
Wu, Kuo-An
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:107022528
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:65
中文關鍵詞:Neuron modelNeuronal networkU(1) neuroncomplex numberbifurcationminimum neuron model
外文關鍵詞:神經元模型神經網絡複數神經複數分岔理論最簡化神經元模型
相關次數:
  • 推薦推薦:0
  • 點閱點閱:73
  • 評分評分:*****
  • 下載下載:30
  • 收藏收藏:0
目前,機器學習僅處理實數,其學習機制是透過以線性代數為基礎的理論建構
而成。然而真實神經元的行為相當複雜,Hodgkin–Huxley 神經元模型需要用四維的非線性動力系統才能較完整描述神經元在固定刺激底下的行為。它藉由不同種類的離子通道的動力演化捕捉到神經元放電的機制。本論文著重於真實神經元的最簡模型化。從三種典型的神經元模型出發,我們發現每個模型所描述的神經的行為模式都存在著相變。透過分岔理論的分析,我們提出了神經元的最簡化模型是以複數型態存在的,並命名為U(1) 神經元模型。藉由極限圈與定點的數學詮釋,此模型得以直觀的描述神經元放電與靜止等行為,並提供行為之間的相變機制。接下來,我們發現U(1) 神經元模型可以很好地抓住Hodgkin–Huxley 模型中的電壓變數。最後,在考慮神經元之間的連結後,我們提出由此神經元模型造出的神經網絡,並在簡單條件下模擬此網絡的行為表現。U(1) 神經元模型涵蓋兩種神經元型態,統一了典型神經模型的精華。此外,其複數性質,更開啟了機器學習領域的新可能性。
At present, the machine learning processes only real numbers. Its mechanism for learning is constructed through the theory based on linear algebra. However, the behavior of real neurons is quite complicated. Hodgkin–Huxley model, which describes the neurons more comprehensively under a fixed stimulus, is a four-dimensional nonlinear dynamic system. It captures the dynamics of the ion channels, which allow the ions to pass by, to generate the electric signals. In this paper, we propose a minimum model for real neurons. Starting from three typical neuron models, we find that the behavioral patterns of the neuron appearing in each model have phase transitions. Through the analysis of bifurcation theory, we propose that the minimum model of neurons should be in complex form, and we name this model as the U(1) neuron model. With the mathematical interpretation of limit cycles and fixed points, this model can intuitively describe the behavior of neurons, such as firing and resting state, and the mechanism for their phase transition. Next, we show that the U(1) neuron model can capture the action potentials well by making a comparison to the Hodgkin–Huxley model. At last, we consider the connections
between neurons to create a neuronal network consisting of the U(1) neurons and give a demonstration of its performance under simple conditions. The U(1) neuron model unifies the essence of typical neuron models. Besides, its complex-number nature opens up new possibilities in the field of machine learning.
Abstract
Contents
1 Introduction -------------------------------------------- 1
2 Neuron Models ------------------------------------------- 3
2.1 Hodgkin–Huxley model ---------------------------------- 5
2.2 FitzHugh-Nagumo model --------------------------------- 11
2.3 Ermentrout-Kopell model ------------------------------- 15
3 Dynamics Phase Transition ------------------------------- 17
3.1 Saddle-node on invariant circle ----------------------- 18
3.2 Hopf bifurcation -------------------------------------- 21
4 U(1) Neuron Model --------------------------------------- 23
4.1 Capture the Essential Dynamics variables -------------- 24
4.2 Comparison with the Hodgkin–Huxley model -------------- 28
5 U(1) Neuronal Network ----------------------------------- 38
6 Simulate U(1) Neuronal Network -------------------------- 42
6.1 Homogeneous Fully-Connected UNN ----------------------- 44
6.2 Inhomogeneous Fully-Connected UNN --------------------- 49
7 Discussion and Future Work ------------------------------ 54
Appendix -------------------------------------------------- 56
A. Stability for fixed point in FitzHugh-Nagumo model ----- 57
B. Decreasing Lyapunov Potential -------------------------- 60
References ------------------------------------------------ 62
[1] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, dec 1943.
[2] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500–544, aug 1952.
[3] Yong Xie, Luonan Chen, Yan Mei Kang, and Kazuyuki Aihara. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77(6), 2008.
[4] John Guckenheimer and JS Labouriau. Bifurcation of the hodgkin and huxley equations: a new twist. Bulletin of Mathematical Biology, 55(5):937, 1993.
[5] B Van der Pol. A theory of the amplitude of free and forced triode vibrations, radio rev. 1 (1920) 701-710, 754-762; selected scientific papers, vol. i, 1960.
[6] Balth van der Pol. On relaxation-oscillations. Philosophical Magazine, 2(11): 978–992, 1926.
[7] Richard FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophysical Journal, 1(6):445–466, 1961.
[8] Jinichi Nagumo, Suguru Arimoto, and Shuji Yoshizawa. An active pulse trans-mission line simulating nerve axon. Proceedings of the IRE, 50(10):2061–2070, 1962.
[9] G Bard Ermentrout and Nancy Kopell. Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM Journal on Applied Mathematics, 46(2):233–253, 1986.
[10] G Bard Ermentrout and David H Terman. Mathematical foundations of neuroscience, volume 35. Springer Science & Business Media, 2010.
[11] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press, 2014.
[12] Bard Ermentrout. Ermentrout-kopell canonical model. Scholarpedia, 3(3):1398, 2008.
[13] Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.
[14] Michael Monteforte and Fred Wolf. Dynamical entropy production in spiking neuron networks in the balanced state. Physical review letters, 105(26):268104, 2010.
[15] Yoshiki Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In International symposium on mathematical problems in theoretical physics, pages 420–422. Springer, 1975.
[16] Yoshiki Kuramoto. Chemical oscillations, waves, and turbulence. Courier Corporation, 2003.
[17] Juan A. Acebrón, L. L. Bonilla, Conrad J.Pérez Vicente, Félix Ritort, and Renato Spigler. The Kuramoto model: A simple paradigm for synchronization phenomena. Reviews of Modern Physics, 77(1):137–185, 2005.
[18] Steven H Strogatz, Renato E Mirollo, and Paul C Matthews. Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized landau damping. Physical review letters, 68(18):2730, 1992.
[19] Neil J Balmforth and Roberto Sassi. A shocking display of synchrony. Physica D: Nonlinear Phenomena, 143(1-4):21–55, 2000.
[20] Renato Mirollo and Steven H Strogatz. The spectrum of the partially locked state for the kuramoto model. Journal of Nonlinear Science, 17(4):309–347, 2007.
[21] Edward Ott and Thomas M. Antonsen. Low dimensional behavior of large systems of globally coupled oscillators. Chaos, 18(3), 2008.
[22] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T. M. Antonsen. Exact results for the Kuramoto model with a bimodal frequency distribution. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 79(2):1–11, 2009.
[23] Michael Breakspear, Stewart Heitmann, and Andreas Daffertshofer. Generative models of cortical oscillations: Neurobiological implications of the Kuramoto model. Frontiers in Human Neuroscience, 4(November):1–14, 2010.
[24] Christian Bick, Marc Goodfellow, Carlo R. Laing, and Erik A. Martens. Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. Journal of Mathematical Neuroscience, 10(1), 2020.
[25] Paul C. Matthews and Steven H. Strogatz. Phase diagram for the collective behavior of limit-cycle oscillators. Physical Review Letters, 65(14):1701–1704, 1990.
[26] Paul C. Matthews, Renato E. Mirollo, and Steven H. Strogatz. Dynamics of a large system of coupled nonlinear oscillators. Physica D: Nonlinear Phenomena, 52(2-3):293–331, 1991.
[27] John R Hughes. Post-tetanic potentiation. Physiological reviews, 38(1):91–113, 1958.
[28] Richard L. Huganir and Roger A. Nicoll. AMPARs and synaptic plasticity: The last 25 years. Neuron, 80(3):704–717, 2013.
[29] Daniel Choquet and Antoine Triller. The dynamic synapse. Neuron, 80(3): 691–703, 2013.
[30] Kimberly Gerrow and Antoine Triller. Synaptic stability and plasticity in a floating world. Current Opinion in Neurobiology, 20(5):631–639, 2010.
[31] Luisa De Vivo, Michele Bellesi, William Marshall, Eric A. Bushong, Mark H. Ellisman, Giulio Tononi, and Chiara Cirelli. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science, 355(6324):507–510, 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *