|
[1] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, dec 1943. [2] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500–544, aug 1952. [3] Yong Xie, Luonan Chen, Yan Mei Kang, and Kazuyuki Aihara. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77(6), 2008. [4] John Guckenheimer and JS Labouriau. Bifurcation of the hodgkin and huxley equations: a new twist. Bulletin of Mathematical Biology, 55(5):937, 1993. [5] B Van der Pol. A theory of the amplitude of free and forced triode vibrations, radio rev. 1 (1920) 701-710, 754-762; selected scientific papers, vol. i, 1960. [6] Balth van der Pol. On relaxation-oscillations. Philosophical Magazine, 2(11): 978–992, 1926. [7] Richard FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophysical Journal, 1(6):445–466, 1961. [8] Jinichi Nagumo, Suguru Arimoto, and Shuji Yoshizawa. An active pulse trans-mission line simulating nerve axon. Proceedings of the IRE, 50(10):2061–2070, 1962. [9] G Bard Ermentrout and Nancy Kopell. Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM Journal on Applied Mathematics, 46(2):233–253, 1986. [10] G Bard Ermentrout and David H Terman. Mathematical foundations of neuroscience, volume 35. Springer Science & Business Media, 2010. [11] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press, 2014. [12] Bard Ermentrout. Ermentrout-kopell canonical model. Scholarpedia, 3(3):1398, 2008. [13] Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007. [14] Michael Monteforte and Fred Wolf. Dynamical entropy production in spiking neuron networks in the balanced state. Physical review letters, 105(26):268104, 2010. [15] Yoshiki Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In International symposium on mathematical problems in theoretical physics, pages 420–422. Springer, 1975. [16] Yoshiki Kuramoto. Chemical oscillations, waves, and turbulence. Courier Corporation, 2003. [17] Juan A. Acebrón, L. L. Bonilla, Conrad J.Pérez Vicente, Félix Ritort, and Renato Spigler. The Kuramoto model: A simple paradigm for synchronization phenomena. Reviews of Modern Physics, 77(1):137–185, 2005. [18] Steven H Strogatz, Renato E Mirollo, and Paul C Matthews. Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized landau damping. Physical review letters, 68(18):2730, 1992. [19] Neil J Balmforth and Roberto Sassi. A shocking display of synchrony. Physica D: Nonlinear Phenomena, 143(1-4):21–55, 2000. [20] Renato Mirollo and Steven H Strogatz. The spectrum of the partially locked state for the kuramoto model. Journal of Nonlinear Science, 17(4):309–347, 2007. [21] Edward Ott and Thomas M. Antonsen. Low dimensional behavior of large systems of globally coupled oscillators. Chaos, 18(3), 2008. [22] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T. M. Antonsen. Exact results for the Kuramoto model with a bimodal frequency distribution. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 79(2):1–11, 2009. [23] Michael Breakspear, Stewart Heitmann, and Andreas Daffertshofer. Generative models of cortical oscillations: Neurobiological implications of the Kuramoto model. Frontiers in Human Neuroscience, 4(November):1–14, 2010. [24] Christian Bick, Marc Goodfellow, Carlo R. Laing, and Erik A. Martens. Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. Journal of Mathematical Neuroscience, 10(1), 2020. [25] Paul C. Matthews and Steven H. Strogatz. Phase diagram for the collective behavior of limit-cycle oscillators. Physical Review Letters, 65(14):1701–1704, 1990. [26] Paul C. Matthews, Renato E. Mirollo, and Steven H. Strogatz. Dynamics of a large system of coupled nonlinear oscillators. Physica D: Nonlinear Phenomena, 52(2-3):293–331, 1991. [27] John R Hughes. Post-tetanic potentiation. Physiological reviews, 38(1):91–113, 1958. [28] Richard L. Huganir and Roger A. Nicoll. AMPARs and synaptic plasticity: The last 25 years. Neuron, 80(3):704–717, 2013. [29] Daniel Choquet and Antoine Triller. The dynamic synapse. Neuron, 80(3): 691–703, 2013. [30] Kimberly Gerrow and Antoine Triller. Synaptic stability and plasticity in a floating world. Current Opinion in Neurobiology, 20(5):631–639, 2010. [31] Luisa De Vivo, Michele Bellesi, William Marshall, Eric A. Bushong, Mark H. Ellisman, Giulio Tononi, and Chiara Cirelli. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science, 355(6324):507–510, 2017.
|