|
1. Ducklin, P. Belgian programmer solves cryptographic puzzle-15 years too soon! 2019; Available from: https://nakedsecurity.sophos.com/2019/05/03/belgian-programmer-solves-cryptographic-puzzle-15-years-too-soon/. 2. Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. in Proceedings 35th annual symposium on foundations of computer science. 1994. Ieee. 3. Inoue, K., E. Waks, and Y. Yamamoto, Differential phase shift quantum key distribution. Physical review letters, 2002. 89(3): p. 037902. 4. Wiesner, S., Conjugate coding. ACM Sigact News, 1983. 15(1): p. 78-88. 5. Bennett, C.H. and G. Brassard, Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. 1984, IEEE New York. 6. Bennett, C.H., G. Brassard, and N.D. Mermin, Quantum cryptography without Bell’s theorem. Physical Review Letters, 1992. 68(5): p. 557. 7. Ekert, A.K., Quantum cryptography based on Bell’s theorem. Physical review letters, 1991. 67(6): p. 661. 8. Bennett, C.H., Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992. 68(21): p. 3121-3124. 9. Stucki, D., et al., Fast and simple one-way quantum key distribution. Applied Physics Letters, 2005. 87(19): p. 194108. 10. Liao, S.-K., et al., Satellite-to-ground quantum key distribution. Nature, 2017. 549(7670): p. 43. 11. Bouchard, F., et al., Underwater quantum key distribution in outdoor conditions with twisted photons. arXiv preprint arXiv:1801.10299, 2018. 12. Hwang, W.-Y., Quantum key distribution with high loss: toward global secure communication. Physical Review Letters, 2003. 91(5): p. 057901. 13. Hillery, M., Quantum cryptography with squeezed states. Physical Review A, 2000. 61(2): p. 022309. 14. Cerf, N.J., M. Levy, and G. Van Assche, Quantum distribution of Gaussian keys using squeezed states. Physical Review A, 2001. 63(5): p. 052311. 15. Ralph, T.C., Continuous variable quantum cryptography. Physical Review A, 1999. 61(1): p. 010303. 16. Huang, D., et al., Long-distance continuous-variable quantum key distribution by controlling excess noise. Scientific reports, 2016. 6: p. 19201. 17. Zhang, Y., et al., Continuous-variable QKD over 50 km commercial fiber. Quantum Science and Technology, 2019. 4(3): p. 035006. 18. Stucki, D., et al., High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New Journal of Physics, 2009. 11(7): p. 075003. 19. Shimizu, K., et al., Performance of long-distance quantum key distribution over 90-km optical links installed in a field environment of Tokyo metropolitan area. Journal of Lightwave Technology, 2013. 32(1): p. 141-151. 20. Liu, C., et al., Differential-phase-shift quantum key distribution using heralded narrow-band single photons. Opt Express, 2013. 21(8): p. 9505-13. 21. Bennett, C.H., et al., Generalized privacy amplification. IEEE Transactions on Information Theory, 1995. 41(6): p. 1915-1923. 22. Yan, H., S.-L. Zhu, and S.-W. Du, Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons. Chinese Physics Letters, 2011. 28(7). 23. Wootters, W.K. and W.H. Zurek, A single quantum cannot be cloned. Nature, 1982. 299(5886): p. 802. 24. Inoue, K., Differential Phase-Shift Quantum Key Distribution Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2015. 21(3): p. 109-115. 25. Inoue, K. and T. Honjo, Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack. Physical Review A, 2005. 71(4). 26. Curty, M., et al., Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states. arXiv preprint quant-ph/0609094, 2006. 27. Honjo, T., et al., Countermeasure against tailored bright illumination attack for DPS-QKD. Optics Express, 2013. 21(3): p. 2667-2673. 28. Lydersen, L., J. Skaar, and V. Makarov, Tailored bright illumination attack on distributed-phase-reference protocols. Journal of Modern Optics, 2011. 58(8): p. 680-685. 29. Waks, E., H. Takesue, and Y. Yamamoto, Security of differential-phase-shift quantum key distribution against individual attacks. Physical Review A, 2006. 73(1). 30. Wen, K., K. Tamaki, and Y. Yamamoto, Unconditional security of single-photon differential phase shift quantum key distribution. Phys Rev Lett, 2009. 103(17): p. 170503. 31. Shor, P.W. and J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol. Physical review letters, 2000. 85(2): p. 441. 32. Boyd, R.W., Nonlinear Optics, Third Edition. 2008: Academic Press, Inc. 640. 33. Chuu, C.-S., G.Y. Yin, and S.E. Harris, A miniature ultrabright source of temporally long, narrowband biphotons. Applied Physics Letters, 2012. 101(5): p. 051108. 34. Fradkin, K., et al., Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO 4. Applied physics letters, 1999. 74(7): p. 914-916. 35. König, F. and F.N. Wong, Extended phase matching of second-harmonic generation in periodically poled KTiOPO 4 with zero group-velocity mismatch. Applied physics letters, 2004. 84(10): p. 1644-1646. 36. Honjo, T., T. Inoue, and K. Inoue, Influence of light source linewidth in differential-phase-shift quantum key distribution systems. Optics Communications, 2011. 284(24): p. 5856-5859. 37. Honjo, T., K. Inoue, and H. Takahashi, Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer. Optics letters, 2004. 29(23): p. 2797-2799.
|