帳號:guest(3.15.221.10)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴玟儒
作者(外文):Lai, Wen-Ju.
論文名稱(中文):微波頻段之磁旋誘導透明原理與應用
論文名稱(外文):Gyro-magnetically Induced Transparency and Opaqueness at Microwave Frequency
指導教授(中文):張存續
指導教授(外文):Chang, Tsun-Hsu
口試委員(中文):黃菁儀
楊慶源
邱軍浩
趙賢文
口試委員(外文):Huang, Jing-Yi
Yang, Ging-Yuan
Chiu, Chun-Hao
Chao, Hsein-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:107022519
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:微波開關器
外文關鍵詞:Microwaveswitch
相關次數:
  • 推薦推薦:0
  • 點閱點閱:260
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
鐵氧體(Ferrite)之磁導率並非一個常數型式,其受飽和磁化量、直流外加磁場及操作頻率影響,因此我們欲透過給予不同的外加磁場來調控張量型式的磁導率,而不同的磁導率會改變電磁波的傳播特性。若阻抗匹配則電磁波可以全部穿透,反而言之,若阻抗不匹配則電磁波全反射。我們提出了一個帶有環型鐵氧體的同軸結構,其可作用在大約2.45 GHz的頻率下,藉由簡單地調整外加磁場,讓入射波可以完全通過或完全反射,如此一來,此同軸鐵氧體的結構可當作一種開關器裝置,由模擬軟體得知此開開器的開與關狀態轉換需要44高斯的磁場大小。在實體設計上,此開關器包含了鐵氧體、紅銅、鐵氟龍、鋁以及N型接頭,透過網路分析儀(VNA)量測此開關器之效果,並利用高斯計量測開與關狀態轉換之磁場大小約為62高斯,亦由逆向工程之方法將此開關器的工作機制以數學式描述,初步的分析其物理意義,對未來設計其他頻段之開關器提供了基礎理論。最後,將此快速開關器推廣至不同鐵氧體的材料特性、結構設計的改變,不同條件下,模擬與量測結果的討論。
The permeability of ferrite is a second rank tensor, depending on the saturation magnetization, the dc bias magnetic field, and the operating frequency. By adjusting the applied bias magnetic field, the permeability tensor can be manipulated which may change the propagating properties of the wave. Here we proposed a coaxial structure with a toroidal ferrite. At frequency around 2.45 GHz, the incident wave can totally transmit or totally reflect by simply adjusting the bias magnetic field. The coaxial-ferrite structure can serve as a switch. The difference of the magnetic bias is just 44 Gauss for the transparent state and the opaque state by simulation. The switch is developed by ferrite, copper, teflon, aluminum and N-type connectors. Actually, this device can switch on or off by adjusting 62 Gauss magnetic bias. It facilitates a high-speed, high-power, and compact switch. The theoretical analysis is derived and the underlying physics is explained, which provide a solid ground for designing similar switches at other frequency bands.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
第1章 緒論 1
1.1研究動機 1
1.2磁性材料簡介 1
1.3研究方法及目標 3
第2章 電磁波在鐵氧體內的行為 5
2.1鐵氧體之電磁波特性分析 5
2.2鐵氧體對圓形極化場的影響 7
2.3損耗的影響 7
2.4去磁因子 8
2.5鐵氧體的損耗機制 9
2.6鐵氧體材料特性與阻抗的關係 9
第3章 開關器模擬設計與實驗量測 13
3.1模擬設計之標準流程與基本結構 13
3.2開關器之基本結構設計 13
3.3第一代開關器模擬設計 14
3.4第一代開關器實驗結果 15
3.5第二代開關器模擬設計 16
3.6第二代開關器實驗結果 16
3.7第三代開關器模擬設計 17
3.8第三代開關器實驗結果 18
3.9 RL Decay計算 21
第4章 開關器理論推導與討論 47
4.1空氣層之理論推導 47
4.2鐵氧體層之理論推導 51
4.3綜觀分析 55
第5章 開關器推廣之研究 59
5.1鐵氧體線寬(linewidth) 59
5.2 Air gap大小 59
5.3 鐵氟龍填入空氣層之影響 59
5.3 改變外殼之材質 60
5.4 量測鐵氧體之特性 60
第6章 結論 64
參考文獻 65
[1]David M. Pozar, Microwave Engineering, 3rd ed. (Addison-Wesley,Massachusetts, 2005), Chap. 9.
[2]E. P. Wohlfarth, Ferromagnetic materials: a handbook on the properties of magnetically ordered substances. (Elsevier, North-Holland, 1980) vol. 2.
[3]T. H. Chang, “Gyromagnetically-induced transparency for ferrites,” Am. J. Phys., vol. 84, no. 4, pp. 279-283, Apr. 2016.
[4]John D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998), Chap. 7.
[5]C. H. Tsai, “Characterizing the Complex Permittivity and Permeability with a Dual Cavity System,” M.S. thesis, National Tsing Hua University, 2017.
[6] Robert E. Collin, Foundations for Microwave Engineering, 2nd ed. (McGraw Hill, New York, 1992), Chap. 6.
[7] R. K. Wangsness, “Ferrimagnetic resonance and some related effects,” Am. J. Phys., vol. 24, pp. 60–66 , 1956.
[8]A. Parsa, T. Kodera, and C. Caloz, “Ferrite based non-reciprocal radome, generalized scattering matrix analysis and experimental demonstration,” IEEE Trans. Antennas Propag., vol. 59, no.3, pp. 810–817, Dec. 2011.
[9]M. Pardavi-Horvath, “Microwave applications of soft ferrites,” J. Magn. Magn. Mater., vol. 215, pp. 171-183, Jun. 2000.
[10]T. Kodera, D. L. Sounas and C. Caloz, “Magnetless nonreciprocal metamaterial (MNM) technology: application to microwave components,” IEEE Trans. Microw. Theory Tech., vol. 61, pp. 1030-1042, Mar. 2013.
[11]C. Goldsmith, T. H. Lin, B. Powers, W. R. Wu, B. Norvell, “Micromechanical membrane switches for microwave applications,” IEEE MTT-S Int. Microwave Symp., vol. 1, pp. 91-94, 1995.
[12]V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen,P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C.Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater., vol. 321, pp. 2035– 2047, July 2009.
[13]J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann, and S. N. Stitzer, “Ferrite devices and materials,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 721–737, Mar. 2002.
[14]V. A. Dmitriyev, “Symmetry of microwave devices with gyrotropic media-complete solution and applications,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 3, pp. 394–401, Mar. 1997.
[15]J. R. Truedson, K. D. McKinstry, R. Karim, and C. E. Patton, “Effective linewidth due to conductivity losses in barium ferrite,” IEEE Trans. Magn., vol. 28, no. 5, pp. 3309–3311,Sept. 1992.
[16]D. Polder and J. Smit, “Resonance phenomena in ferrites,” Rev. Mod. Phys., vol. 25, pp. 89–90, Jan. 1953.
[17]J. R. Truedson, K. D. McKinstry, R. Karim, and C. E. Patton, “Effective linewidth due to conductivity losses in barium ferrite,” IEEE Trans. Magn., vol. 28, no. 5, pp. 3309–3311, Sept. 1992.
[18]M. M. Abusitta, D. Zhou, R. A. Abd-Alhameed, and P. S. Excell, “Design of controlled RF switch for beam steering antenna array,” PIERS Online., vol. 4, no. 3, pp. 356-360, 2008.
[19]M.-S. Lee and Y.-H. Kim, “Design and performance of a 24-GHz switch-antenna array FMCW radar system for automotive applications,” IEEE Trans. Veh. Technol., vol. 59, no. 5, pp. 2290–2297, Jun. 2010.
[20]N. A. Riza, “High-speed high-isolation 2 × 2 fiber-optic switch for wideband radar photonic beamforming controls,” J. Lightw. Technol., vol. 26, no. 15, pp. 2500–2505, July 2008.
[21]B. Kuanr, I. R. Harward, D. L. Marvin, T. Fal, R. E. Camley, D. L.Mills, and Z. Celinski, “High-frequency signal processing using ferromagnetic metals,” IEEE Trans. Magn., vol. 41, no. 10, pp. 3538–3543, Oct. 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *