帳號:guest(3.149.230.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅之佑
作者(外文):Lo, Chih-Yu
論文名稱(中文):共形重力中的輻射黑洞
論文名稱(外文):Vaidya black hole in Weyl gravity
指導教授(中文):朱創新
指導教授(外文):Chu, Chong-Sun
口試委員(中文):吳思曄
耿朝強
楊毅
口試委員(外文):Wu, Si-Ye
Geng, Chao-Qiang
Yang, Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:107022511
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:35
中文關鍵詞:共形重力輻射黑洞超平移對稱
外文關鍵詞:Weyl gravityVaidya metricSupertranslation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:256
  • 評分評分:*****
  • 下載下載:36
  • 收藏收藏:0
在魏爾重力中,一般的輻射黑洞所帶有的能量動量張量與愛因斯坦重力論中的不同,並不是只有帶有能量項。在魏爾重力中,我們仍然能構造只帶有能量項的輻射黑洞,發現其會有額外的線性項貢獻。我們將可達瑪向量推廣到魏爾重力中,並用量子穿隧的方法研究魏爾重力中輻射黑洞的輻射率。我們也考慮時空的超平移對稱性,並計算經過超平移之後的輻射黑洞所帶有的能量動量張量。最後,我們也透過量子穿隧的方法計算超平移之輻射黑洞的輻射率,我們會發現該輻射仍然是滿足波茲曼分布,並且其帶有的溫度會與角度相關,而此結果是和愛因斯坦重力論中所得到的結果相同。
Vaidya metric describe a radiating black hole in Einstein gravity. The usual Vaidya metric in Einstein gravity is not a null dust solution in Weyl gravity. However, we find a family of null dust Vaidya solutions for Weyl gravity, which receive an extra linear term. We also use the tunneling method to study the radiation profile of Vaidya metrics by extending the definition of the Kodama vector to Weyl gravity. Finally, we introduce supertranslation to asymptotically flat black hole in Weyl gravity and find out the corresponding energy momentum tensor needed to implant supertranslation hair onto it. We also apply tunneling method to supertranslated Vaidya black hole in Weyl gravity. We find out that the radiation is still thermal and the radiation temperature has the same angular dependence as in the Einstein case.
1. Introduction 3
2. Weyl gravity 4
2.1 Weyl gravity 4
2.2 Black hole solutions in Weyl gravity 6
2.3 Galactic rotational curve 7
2.4 Linearized equation of motion 9
2.5 Vaidya metric in Weyl gravity 11
3. Hawking radiation as tunneling 13
3.1 Radiation of Schwarzschild metric in Eintein gravity 13
3.2 Radiation of Vaidya metric in Eintein gravity 14
3.3 Radiation of Vaidya metric in Weyl gravity 16
4. Supertranslation 18
4.1 BMS symmetry 18
4.2 Supertranslated Schwarzschild metric in Einstein gravity 20
4.3 Supertranslated Vaidya metric in Einstein gravity 22
4.4 Supertranslated Vaidya metric in Weyl gravity 24
5. Conclusions 27
Appendices 28
A Equation of motion for Weyl gravity 28
B Linearized equation of motion 29
C Details for perturbation computation 31
D The WKB approximation 33
[1] Stephen L. Adler. Einstein gravity as a symmetry-breaking effect in quantum fieldtheory.Rev. Mod. Phys., 54, 1982.
[2] H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner. Gravitational Waves inGeneral Relativity. VII. Waves from Axi-Symmetric Isolated Systems.Proc. R. Soc.Lond. A, 269, 1962.
[3] I. Booth. Black-hole boundaries.Can. J. Phys., 83, 2005.
[4] Chong-Sun Chu and Yoji Koyama. Soft hair of dynamical black hole and Hawkingradiation.J. High Energ. Phys., 2018.
[5] W. Collins. Mechanics of apparent horizons.Phys. Rev. D, 45, 1992.
[6] Geoffrey Comp`ere and Adrien Fiorucci. Advanced Lectures on General Relativity.arXiv:1801.07064 [hep-th], 2018.
[7] Cemsinan Deliduman, Oˇguzhan Kas,ık ̧cı, and Barıs,Yapıs,kan. Flat galactic rotationcurves from geometry in Weyl gravity.Astrophys. Space Sci., 365, 2020.
[8] K. C. Freeman. A Treatise on the Theory of Bessel Functions.Nature, 156, 1945.
[9] K. C. Freeman. On the Disks of Spiral and S0 Galaxies.Astrophys. J., 160, 1970.
[10] S. W. Hawking. Particle creation by black holes.Comm. Math. Phys., 43, 1975.
[11] Stephen W. Hawking, Malcolm J. Perry, and Andrew Strominger. Superrotationcharge and supertranslation hair on black holes.J. High Energ. Phys., 2017.
[12] Sean A. Hayward. General laws of black-hole dynamics.Phys. Rev. D, 49, 1994.
[13] Sean A. Hayward. Unified first law of black-hole dynamics and relativistic thermo-dynamics.Class. Quantum Grav., 15, 1998.
[14] William A. Hiscock. Gravitational entropy of nonstationary black holes and sphericalshells.Phys. Rev. D, 40, 1989.
[15] H. Kodama. Conserved Energy Flux for the Spherically Symmetric System and theBackreaction Problem in the Black Hole Evaporation.Prog. Theor. Phys., 63, 1980.
[16] H. L ̈u, Yi Pang, and C. N. Pope. Conformal gravity and extensions of critical gravity.Phys. Rev. D, 84, 2011.
[17] H. L ̈u and C. N. Pope. Critical Gravity in Four Dimensions.Phys. Rev. Lett., 106,2011
[18] Juan Maldacena. Einstein gravity from conformal gravity.arXiv:1105.5632 [hep-th],2011.
[19] Philip D. Mannheim. Making the case for conformal gravity.Found. Phys., 42, 2012.
[20] Philip D. Mannheim. Comment on “Problems with Mannheim’s conformal gravityprogram”.Phys. Rev. D, 93, 2016.
[21] Philip D. Mannheim and James G. O’Brien. Fitting galactic rotation curves withconformal gravity and a global quadratic potential.Phys. Rev. D, 85, 2012.
[22] Philip D. Mannheim and James G. O’Brien. Galactic rotation curves in conformalgravity.J.: Phys. Conf. Ser., 437, 2013.
[23] Maulik K. Parikh and Frank Wilczek. Hawking Radiation As Tunneling.Phys. Rev.Lett., 85, 2000.
[24] Farrin Payandeh and Mohsen Fathi. R2theory of gravity.J.: Phys. Conf. Ser., 442,2013.
[25] R. J. Riegert. Birkhoff’s Theorem in Conformal Gravity.Phys. Rev. Lett., 54, 1984.
[26] R. Sachs. Asymptotic Symmetries in Gravitational Theory.Phys. Rev., 128, 1962.
[27] K. S. Stelle. Renormalization of higher-derivative quantum gravity.Phys. Rev. D,16, 1977.
[28] K. S. Stelle. Classical gravity with higher derivatives.Gen. Relativ. Gravit., 9, 1978.
[29] Andrew Strominger. Advanced Lectures on General Relativity.arXiv:1703.05448[hep-th], 2017.
[30] Gerard ’t Hooft. A Class of Elementary Particle Models Without Any AdjustableReal Parameters.Found. Phys., 41, 2011.
[31] Youngsub Yoon. Problems with Mannheim’s conformal gravity program.Phys. Rev.D, 88, 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *