帳號:guest(3.17.164.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇 爽
作者(外文):Su, Shuang
論文名稱(中文):一個從含有單一關係元之有限生成群到SL(2,C)的同態空間之光滑性質的充分條件
論文名稱(外文):A sufficient condition of smoothness of homomorphism space of a finitely generated group with one relator to SL(2,C)
指導教授(中文):何南國
指導教授(外文):Ho, Nan-Kuo
口試委員(中文):吳思曄
蕭欽玉
口試委員(外文):Wu, Siye
Hsiao, Chin-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:107021522
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:36
中文關鍵詞:表現簇特徵簇模空間
外文關鍵詞:Representation varietyCharacter varietyModuli space
相關次數:
  • 推薦推薦:0
  • 點閱點閱:448
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這篇論文裡,我們描述了從有限循環群到SL(2,C)的同態空間並證明了在這個同態空間中,幾乎所有點都是光滑的。接著,我們考慮了一個更一般的情形,從含有單一關係元之有限生成群到SL(2,C)的同態空間。我們找出一個在此同態空間上的光滑性的充分條件。更進一步的,受到這兩個例子計算過程的啟發,我們發現上述之結論可以推廣到從含有單一關係元之有限生成
群到SL(n,C)之同態空間的情況。
In this thesis, we describe the homomorphism space of a finite cyclic group to SL(2,C) and show that almost all it's points are smooth points. Then, we consider a more general case, the homomorphism space of a finitely presented group with a single relator to SL(2,C). We give a sufficient condition of the smoothness of the homomorphism space. Moreover, inspired by the calculation process of these two cases, we find out that the conclusions above can be generalized to the case of homomorphism space of a finitely presented group with a single relator to SL(n,C) for arbitrary n.
1 Introduction 5

2 The homomorphism space 6

3 The Fox derivation 9

4 Lyndon's sequence 12
4.1 Lyndon's Simple identity theorem....12
4.2 Lyndon's sequence of a finitely presented group with a single relator....14

5 The homomorphism space from Z_p to SL(2;C) 16
5.1 Description of Hom(\varPi;G)....17
5.2 Calculation of dim(ker \tensor*[^3]{\check{M}}{^2})....10
5.3 Calculation of dim H^2(\varPi, g_{Ad \circ
hi})....22
5.4 The main theorem....23

6 Homomorphism space of group with a single relator to SL(2,C) 17

7 Generalization 29

8 Appendix 33
[1] S. Eilenberg and S. MacLane, Cohomology theory in abstract groups, I, Ann.
Math. 48, 51-78, 1947.

[2] C. Florentino and S. Lawton, Singularities of free group character varieties, Pacific J.
Math. 260, 149-179, 2012.

[3] W.M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv.
Math. 54, 200-225, 1984.

[4] W.M. Goldman, Topological components of spaces of representations, Invent.
Math. 93, 557-607, 1988.

[5] W.M. Goldman and J.J. Millson, Deformation of flat bundles over K ahler manifolds,
in: Geometry and topology (Athens, GA, 1985), eds. C. McCrory and T.Shifrin,
129-145, Lecture Notes in Pure and Appl. Math. 105, Dekker, New York,
1987.

[6] N.-K. Ho and C.-C.M. Liu, Connected Components of the Space of Surface Group
Representations, IMRN 44, 2359-2372, 2003.

[7] N.-K. Ho and C.-C.M. Liu, Connected Components of the Space of Surface Group
Representations II, IMRN 16, 959-979, 2005.

[8] G. Harris and C. Martin, The roots of a polynomial vary continuously as a function of the coefficients,
Proc. Amer. Math. Soc. 100, 390-392, 1987.


[9] N.-K. Ho, G. Wilkin and S. Wu, Condition of smoothness of moduli spaces of flat connections and of representation varieties,
Math. Z. 293, 1-23, 2019.

[10] D.L. Johnson, Presentations of groups, London Math. Soc. Student Texts, 15,
Cambridge Univ. Press, Cambridge, 1990.

[11] S. Lawton, Algebraic independence in SL(3,C) character varieties of free group,
J. Algebra 324, 1383-1391, 2010.

[12] S. Lawton and A.S. Sikora, Varieties of characters, Algebras and Representation Theory,
133-1141, 2017.

[13] J. Li, The space of surface group representations, Manuscripta Math. 78, 223-243, 1993.

[14] R.C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. Math. 52, 650-665, 1950.

[15] R.C. Lyndon and P.E. Schupp, Combinatorial group theory, Berlin-Heidelberg-New York, Springer, 2001.

[16] A.S. Sikora, Character varieties, Trans. Amer. Math. Soc. 364, 5173-5208, 2012
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *