帳號:guest(18.118.253.124)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳冠廷
作者(外文):Chen, Guan-Ting
論文名稱(中文):探討函數體上的Drinfeld-Siegel可逆模函數
論文名稱(外文):On Drinfeld-Siegel Units over Function Fields
指導教授(中文):魏福村
指導教授(外文):Wei, Fu-Tsun
口試委員(中文):于靖
張介玉
口試委員(外文):Yu, Jing
Chang, Chieh-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:107021514
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:33
中文關鍵詞:Drinfeld模曲線Drinfeld可逆模函數Drinfeld-Siegel可逆模函數尖點因子子群Stickelberger分佈
外文關鍵詞:Drinfeld modular curveDrinfeld modular unitDrinfeld-Siegel unitcuspidal divisor subgroupStickelberger distribution
相關次數:
  • 推薦推薦:0
  • 點閱點閱:85
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們參考Kubert和Lang的做法,以Stickelberger分佈去分析Drinfeld-Siegel可逆模函數在Drinfeld模曲線尖點處的零根數。我們證明在給定的等級下Drinfeld-Siegel可逆模函數能夠生成出對於所有Drinfeld可逆模函數的一個有限指數子群,並且能推論出對於Drinfeld模曲線的Picard群中尖點因子子群的有限性。
We follow Kubert and Lang's method on Stickelberger distribution to analyze the orders of vanishing of Drinfeld-Siegel units at cusps of Drinfeld modular curves. Our result shows that for a given level, the Drinfeld-Siegel units generate a finite index subgroup of all Drinfeld modular units. A direct consequence is the finiteness of the cuspidal divisor subgroup of the Picard group of a Drinfeld modular curve.
Abstract
誌謝辭
Contents
Chapter 1. Introduction----------------------------------------1
Chapter 2. The Cartan Groups-----------------------------------5
Chapter 3. Distributions---------------------------------------7
3.1. Stickelberger Distributions-------------------------------8
3.2. Bernoulli Distributions----------------------------------10
3.3. Hurwitz Zeta Function------------------------------------12
Chapter 4. Drinfeld Modular Units-----------------------------17
4.1. Drinfeld Modular Forms-----------------------------------17
4.2. Klein Forms----------------------------------------------19
4.3. Drinfeld Modular Units and Cusps-------------------------21
4.4. Drinfeld-Siegel Units------------------------------------24
4.5. Examples of Indices--------------------------------------26
4.6. Drinfeld Modular Curves and Cuspidal Divisor Subgroups---27
Appendix A. Code----------------------------------------------29
List of Symbols-----------------------------------------------31
Bibliography--------------------------------------------------33
A. Deitmar and S. Echterhoff, Principles of Harmonic Analysis, Second Edition, Springer, 2014.
E.-U. Gekeler, Drinfeld Modular Curves, Lecture Notes in Math. 1231, Springer-Verlag, 1986.
E.-U. Gekeler, On the coefficients of Drinfeld modular forms, Invent. Math. 93, 1988, 667-700.
E.-U. Gekeler, On the cuspidal divisor class group of a Drinfeld modular curve, Doc. Math. J. DMV 2, 1997, 351-374.
E.-U. Gekeler, A survey on Drinfeld modular forms, Turk J Math. 23, 1999, 485-518.
E.-U. Gekeler, A note on the finiteness of certain cuspidal divisor class groups, Isr. J. Math. 118, 2000, 357–368.
M. M. Kapranov, On cuspidal divisors on the modular varieties of elliptic modules, Math. USSR-Izv. 30 ,1988, no.3, 533–547.
D. Kubert and S. Lang, Modular Units, Springer-Verlag, 1981.
M. Rosen, Number Theory in Function Fields, GTM 210, Springer-Verlag, New York, 2002.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *