|
[1] A. Ad´am, Research problem 2-10, Journal of Combinatorial Theory, vol. 2, ´ 393, 1967. [2] A. Altshuler, Construction and enumeration of regular maps on the torus, Discrete Mathematics, vol. 4, 201–217, 1973. [3] A. Hajnal and E. Szemer´edi, Proof of a conjecture of P. Erd˝os, In combinatorial theory and its applications, North Holland, vol. 2, pp. 601–623, 1970. [4] A. Cayley, Desiderata and suggestions, American Journal of Mathematics, vol. 1, no. 2, 174–176, 1878. [5] A. Nakamoto, Irreducible quandrangulations of the torus, Journal of Combinatorial Theory, vol. 67, 183–201, 1996. [6] B. Elspas and J. Turner, Graphs with circulant adjacency matrices, Journal of Combinatorial Theory, vol. 9, 297–307, 1970. 68 [7] E. B´ezout, Th´eorie g´en´erale des ´equations alg´ebriques, University of Lausanne, ´ Ph. D. Pierres, 1779. [8] B. Bogstad and L. J. Cowen, The distinguishing number of the hypercube, Discrete Mathematics, vol. 283, 29–35, 2004. [9] B. L. Chen, K. W. Lih and P. L. Wu, Equitable Coloring and the maximum degree, European Journal of Combinatorics, vol. 15, 443–447, 1994. [10] C. H. Li, On isomorphisms of finite Cayley graphs a survey, Discrete Mathematics, vol. 256, 301–334, 2002. [11] C. Delorme, O. Favaron and M. Mah´eo, Isomorphisms of Cayley multigraphs of degree 4 on finite abelian groups, European Journal of Combinatorics, vol. 13, 59–61, 1992. [12] C. Heuberger, On planarity and colorablity of circulant graphs, Discrete Mathematics, vol. 268, 153–169, 2003. [13] H. Kierstead and A. V. Kostochka, Every 4-colorable graph with maximum degree 4 has an equitable 4-coloring, Journal of Graph Theory, vol. 71, no. 1, 31–48, 2012. [14] H. Furmanczyk, A. Jastrzebski and M. Kubale, Equitable coloring of graphs, recent theoretical results and new practical algorithms, Archives of Control Sciences, vol. 26, no. 3, 281–295, 2016. [15] K. L. Collins and J. P. Hutchinson, Four-coloring six-regular graphs on the torus, In Graph Coluring and Applications, vol. 23, 21–34,1999. [16] K. W. Lih, Equitable coloring of graphs, Handbook of combinatorial optimization, Second edition, Panos M. Pardalos, Ding Zhu Du and Ronald L. Graham, pp. 1199–1248, 2013. [17] M. Muzychuk, On Ad´am’s conjecture for circulant graphs, Discrete Mathemat- ´ ics, vol. 176, 285–298, 1997. 69 [18] S. Nicoloso and U. Pietropaoli, Isomorphism testing for circulant graphs Cn(a, b), Utilitas Mathematica, vol. 87, 165–182, 2010. [19] T. Fukuda and S. Negami, The distinguish numbers of 4-regular quadrangulations on the torus, Yokohama Mathematical Journal, vol. 55, 47–70, 2009. [20] W. Imrich, J. Jerebic and S. Klavˇzar, The distinguishing number of Cartesian products of complete graphs, European Journal of Combinatorics, vol. 29, 922– 929, 2008. [21] W. Imrich and S. Klavˇzar, Distinguishing Cartesian powers of graphs, Journal of Graph Theory, vol. 53, no. 3, 250–260, 2006. [22] W. Meyer, Equitable coloring, The American mathematical monthly, vol. 80, 920–922, 1973.
|