帳號:guest(3.144.23.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡柏澍
作者(外文):Tsai, Bo-Shu.
論文名稱(中文):飛機結構對於人員飛航劑量評估的影響分析
論文名稱(外文):Analysis of the Influence of Aircraft Structure on the Evaluation of the Doses to Aircrew Members
指導教授(中文):許榮鈞
指導教授(外文):SHEU, RONG-JIUN
口試委員(中文):趙得勝
林威廷
口試委員(外文):CHAO, TE-SHENG
LIN, UEI-TYNG
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:107013518
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:101
中文關鍵詞:蒙地卡羅模擬飛航劑量宇宙射線
外文關鍵詞:Monte Carlo simulationCosmic rayFlight dose
相關次數:
  • 推薦推薦:0
  • 點閱點閱:289
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
飛航高度的宇宙射線會造成航空機組人員可觀的輻射曝露,ICRP 60(1991)號報告中建議將飛航劑量納入職業曝露的管理範疇。至此各國航空業者開始重視對飛航劑量的評估,文獻回顧顯示絕大部分的評估模式與程式並無考量飛機結構與乘載內容對於輻射的屏蔽或散射造成的效應,因此本研究深入探討此一問題對於高空宇宙射線輻射場特性以及飛航劑量評估的影響。
本研究設計由簡單到複雜的四種模型逐步探討宇宙射線各種粒子在不同條件下的能譜與劑量變化:(1)以45m半徑的真空球體模型進行射源的驗證,確保NTHU-FDC給出的能譜可以重現在MCNP的射源描述;(2)在45m球體中填入高空密度之大氣,探討宇宙射線在空氣中散射與衰減的情形,檢視其對宇宙射線能譜與劑量率的影響;(3) 在前述模型中加入一個極簡化的飛機結構(0.5mm空心鋁圓筒),觀察此簡化艙殼對宇宙射線能譜與劑量率的影響;(4)建置合理的飛機幾何模型,近似完整機體外型、尺寸、材質以及艙體內裝與乘載等,探討飛機結構對飛航高度下的宇宙射線輻射場能譜以及機組人員有效劑量率評估之影響。
根據前述的模擬結果,本研究總結飛航高度下宇宙射線輻射場在飛機結構內的能譜變化,並量化此一效應對飛航劑量評估的影響。飛航人員的有效劑量率在考慮合理飛機模型後會有約-10%至-17%的劑量率變化,此一變化幅度會受到不同剛度與太陽活度的影響。剛度與太陽活度較高的條件下,有效劑量衰減11.71%;剛度與太陽活度較低的條件下,有效劑量則衰減16.23%。本研究也探討乘客與燃油是否滿載的情境,結果顯示飛機滿載時有效劑量率衰減較大(12.27%),空機則衰減較小(4.05%)。本研究提供各種不同飛機結構與乘載內容對於高空宇宙射線的量化影響,相關結果可以作為未來實際在民航客機上量測飛航劑量時的實驗設計與儀器選擇參考。
Cosmic-ray-induced radiation field at flight altitudes causes non-negligible radiation exposure to aircrew. ICRP considers aircrew to be exposed to radiation on their jobs and recommends including as occupational radiation exposure. Airline companies in some countries are therefore required to assess the in-flight radiation exposure of their aircrew. Several models and computer programs are available for the purpose. However, after an extensive survey and review of literature on this topic, the author found that almost all of the aviation dose assessments did not take into account the influence of aircraft structure on the evaluation of the doses to aircrew members. The situation motivated us to perform this study: building a reasonably accurate aircraft model and simulating the interaction between cosmic radiation with airplane structure. This study explored the variation of cosmic-ray spectra and doses at flight altitudes under several geometries and conditions: (1) A vacuum sphere with a radius of 45 meters was used to verify the equivalence of the source definition in MCNP and that given by NTHU-FDC. (2) The previous sphere was filled with high-altitude air to observe the interaction of cosmic radiation with air nuclei. (3) A cylinder with 0.5-mm-thick aluminum shell was used to estimate the interaction of cosmic radiation with aircraft outer shell. (4) A high-fidelity aircraft model of B777-300ER including interior and exterior details was built to reasonably simulate the interaction of cosmic radiation with aircraft structure. Compared with the cosmic-ray-induced radiation field in the atmosphere, the simulated result provided a detailed description about the perturbation of the radiation field due to the existence of aircraft structure. The result is useful for further improving the current methodologies used in the dose assessment of aircrew and passengers.
摘要 i
Abstract ii
致謝 iii
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 宇宙射線與飛航劑量簡介 1
1.2 影響飛航劑量評估的影響因子 3
1.3 研究動機 6
1.4 文獻回顧 7
第二章 研究方法及模型設計 13
2.1 飛航高度的射源描述NTHU Flight Dose Calculator 13
2.2 蒙地卡羅粒子遷移計算模擬程式 MCNP 16
2.3 Case 0:真空圓球(驗證射源設定) 17
2.3.1 射源設定與劑量轉換因子 17
2.3.2 能譜比較與強度調整 21
2.4 Case 1:填入大氣(考量空氣散射) 28
2.5 Case 2:簡單圓筒殼體(極簡的飛機外殼) 33
2.6 Case 3:合理飛機模型(考量飛機結構與承載) 38
2.6.1 B777-300ER幾何模型 39
2.6.2 組件體積估算方法與飛機幾何結構驗證 45
2.6.3 不同剛度與太陽活度的射源條件 48
第三章 模擬結果分析與討論 54
3.1 Cases 0, 1, 2, 3宇宙射線各成分劑量的比較 54
3.1.1 只考慮初始粒子 55
3.1.2 考慮初始與二次粒子 58
3.1.3 二次粒子來源分析 63
3.2 Case 3宇宙射線各成分能譜在不同機艙位置的比較 67
3.2.1 只考慮初始粒子 67
3.2.2 考慮初始與二次粒子 71
3.3 宇宙射線各成分在不同機艙位置的劑量 75
3.4 比較不同剛度與太陽活度的影響 78
3.5 比較不同燃油與承載情節的影響 85
3.6 模型錯誤的經驗回饋 88
3.6.1 駕駛艙儀表板材質設定的影響 88
3.6.2 飛機整體組件幾何設定的影響 92
第四章 結論與未來工作 95
4.1 結論 95
4.2 未來工作 97
參考文獻 100
[1] V. F. Hess, "Uber Beobachtungen der durchdringenden Strahlung bei sieben Freiballon fahrten," Physik. Zeitschr, vol. 23, pp. 1084-1091, 1912.
[2] ICRP, "Radiological Protection from Cosmic Radiation in Aviation. ICRP Publication 132," Ann. ICRP, vol. 45, 2016.
[3] CERN, Cosmic rays:https://home.cern/science/physics/cosmic-rays-particles-outer-space.
[4] D. T. Bartlett, "Radiation protection aspects of the cosmic radiation exposure of aircraft crew," Radiat Prot Dosimetry, vol. 109, no. 4, pp. 349-55, 2004. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/15273353.
[5] ICRP, "1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60," Ann. ICRP, vol. 21, 1991.
[6] D. F. Smart and M. A. Shea, "A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft," Advances in Space Research, vol. 36, no. 10, pp. 2012-2020, 2005.
[7] D. F. Smart, M. A. Shea, and E. O. Flückiger, "Magnetospheric Models And Trajectory Computations," Space Science Reviews, vol. 93, pp. 305-333, 2000.
[8] ICRU, "Reference Data for the Validation of Doses from Cosmic Radiation Exposure of Aircraft Crew ,ICRU Report 84," Journal of the ICRU, vol. 10, 2010.
[9] Wikipedia, Heliopause: https://zh.wikipedia.org/wiki/%E6%97%A5%E7%90%83%E5%B1%A4%E9%A0%82 (2020/11).
[10] Wikipedia, Solar cycle:https://en.wikipedia.org/wiki/Solar_cycle (2020/7).
[11] 楊子毅, "新版宇宙射線飛航劑量評估程式的開發與應用," 博士論文, 國立清華大學, 2020.
[12] A. Ferrari, M. Pelliccioni, and R. Villari, "Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model," Radiat Prot Dosimetry, vol. 108, no. 2, pp. 91-105, 2004. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/14978289.
[13] A. Ferrari, M. Pelliccioni, and T. Rancati, "Calculation Of The Radiation Environment Caused By Galactic Cosmic Rays For Determining Air Crew Exposure," Radiation Protection Dosimetry, vol. 93, pp. 101-114, 2001.
[14] I. A. Kurochkin, B. Wiegel, and B. R. L. Siebert, "Study Of The Radiation Environment Caused By Galactic Cosmic Rays At Flight Altitudes, At The Summit Of The Zugspitze And At Ptb Braunschweig," Radiation Protection Dosimetry, vol. 83, pp. 281-291, 1999.
[15] G. Battistoni, A. Ferrari, M. Pelliccioni, and R. Villari, "Evaluation of the doses to aircrew members taking into consideration the aircraft structures," Advances in Space Research, vol. 36, no. 9, pp. 1645-1652, 2005, doi: 10.1016/j.asr.2005.04.037.
[16] H. G. I. Hughes and M. R. James, "MCNP6 class at Alabama Agricultural and Mechanical University," LA-UR-14-21281, p. 6, 2014.
[17] M. Pelliccioni, "Overview Of Fluence-to-effective Dose And Fluence-to-ambient Dose Equivalent Conversion Coefficients For High Energy Radiation Calculated Using The Fluka Code," Radiation Protection Dosimetry, vol. 88, pp. 279-297, 2000.
[18] ICRP, "Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74," Ann. ICRP, vol. 26, 1996.
[19] Z.-Y. Yang, P.-C. Lai, and R.-J. Sheu, "Update and New Features of NTHU Flight Dose Calculator: A Tool for Estimating Aviation Route Doses and Cumulative Spectra of Cosmic Rays in Atmosphere," IEEE Transactions on Nuclear Science, vol. 66, no. 8, pp. 1931-1941, 2019.
[20] 交通部民用航空局, 108年國籍航空器型別及出廠製造日期(機齡)一覽表:https://www.caa.gov.tw/Article.aspx?a=2376&lang=1.
[21] 長榮航空, B777-300ER: https://www.evaair.com/zh-tw/fly-prepare/our-fleets/passenger-airplanes/777-300ER/.
[22] Modern Airliners, Boing 777:https://modernairliners.com/boeing-777/boeing-777-specs/ (2020/3).
[23] Aviation, Boeing 777-300ER Fuel Tank Dry Bay : https://aviation.stackexchange.com/questions/59789/how-do-dry-bays-protect-against-fire (2020/9).
[24] Wikipedia, Boeing 777-300ER:https://zh.wikipedia.org/wiki/%E6%B3%A2%E9%9F%B3777 (2020/2).
[25] 陳韋霖, "建築物內宇宙射線牟子與中子的研究," 博士論文, 國立清華大學, 2018.
[26] O. Ploc, I. Ambrozova, J. Kubancak, I. Kovar, and T. P. Dachev, "Publicly available database of measurements with the silicon spectrometer Liulin onboard aircraft," Radiation Measurements, vol. 58, pp. 107-112, 2013, doi: 10.1016/j.radmeas.2013.09.002.
[27] K. Copeland, "Influence of Aircraft Self Shielding on World Wide Calculations of Effective Dose Rates to Occupants," presented at the International Conference on Environmental Systems, 2018.
[28] A. C. M. Prado et al., "Simulation of Cosmic Radiation Transport Inside Aircraft for Safety Applications," IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 5, pp. 3462-3475, 2020, doi: 10.1109/taes.2020.2985304.
[29] Modern Airliners, What Materials Are Aircraft Made Of :https://www.aircraftcompare.com/blog/what-are-planes-made-of/ (2020/7).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *