帳號:guest(18.226.226.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):姜治嘉
作者(外文):Chiang, Chih-Chia
論文名稱(中文):馬鞍山電廠主蒸汽管路破裂事故分析之RELAP5/SNAP/DAKOTA模式建立與應用
論文名稱(外文):The Development and Application of Maanshan RELAP5/SNAP/DAKOTA Model in MSLB Analysis
指導教授(中文):馮玉明
王仲容
指導教授(外文):Ferng, Yuh-Ming
Wang, Jong-Rong
口試委員(中文):林浩慈
陳紹文
口試委員(外文):Lin, Hao-Tzu
Chen, Shao-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:107013514
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:101
中文關鍵詞:核三廠主蒸汽管路破裂事故不準度分析RELAP5/MOD3.3DAKOTA
外文關鍵詞:Maanshan NPPMSLBUncertainty analysisRELAP5/MOD3.3DAKOTA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:300
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  馬鞍山電廠為三迴路壓水式反應器之核能電廠,其100%爐心熱功率為2822MWt。主蒸汽管路破裂事故(Main Steam Line Break, MSLB)為馬鞍山電廠終期安全分析報告(Final Safety Analysis Report, FSAR)核能電廠設計基準事故(Design Basis Accident, DBA)中一項非常重要的安全分析。當電廠發生主蒸汽管路破裂事故時,核能電廠之安全系統必須確保核能系統有足夠的能力以維持電廠保持安全餘裕。本研究所使用之程式為美國核能管制委員會(United State Nuclear Regulatory Commission, U.S. NRC)資助下由美國愛德荷國家工程實驗室(Idaho National Engineering and Environmental Laboratory, INEEL)所發展的熱水流安全分析程式RELAP5/MOD3.3(Reactor Excursion and Leak Analysis Program)和圖形化介面程式SNAP(Symbolic Nuclear Analysis Package)。在過去,針對核能電廠設計基準事故或嚴重事故時較常以保守的分析方法進行分析,以模擬核能系統內之一次側壓力、二次側壓力、燃料護套溫度、水位等結果。隨著計算機的進步與熱水流安全分析程式之演進,國際上開始逐漸使用最佳估算分析與不準度分析來進行嚴重事故暫態分析,不僅能夠模擬更複雜的熱水流現象,並且可以模擬出較為準確的結果。本研究首先建立RELAP5/MOD3.3 MSLB分析模式以探討各熱水力結果於MSLB事故基本案例下對於電廠之影響,並探討沖放係數與臨界流模式對於結果之靈敏度分析。緊接著以SNAP圖形化界面搭配DAKOTA不準度安全分析程式進行不準度分析,探討於主蒸汽管路破裂事故下邊界條件與模型不準度參數偏差下對於熱水流現象的影響。最後在不準度分析結果中,利用皮爾森相關係數理論對選取之不準度參數估算其相關程度。結果顯示模型不準度參數對於結果有著顯著的影響。本研究成功建立了RELAP5/MOD3.3耦合圖形化介面程式SNAP與不準度分析程式DAKOTA進行MSLB事故下之不準度分析,並透過Python進行數據後處理,以便往後不準度研究者快速且正確地擷取結果。
  The Maanshan nuclear power plant is a three-loop PWR. Its rated core thermal power is 2822 MWt. The Main Steam Line Break accident(MSLB)is one of the Design Basis Accidents(DBAs)in Maanshan Final Safety Analysis Report(FSAR). When MSLB occur, the safety systems in nuclear power plant must be secure adequate safety margin. In this thesis adopts RELAP5/MOD3.3, an advanced thermohydraulic code developed by Idaho National Engineering and Environmental Laboratory(INEEL), combined with SNAP, an effective and convenient CGI code to establish Maanshan Nuclear Power Plant RELAP5/SNAP/DAKOTA model for MSLB safety analysis. In the past time, conservative analysis approach was widely used. Most of the countries followed the 10 CFR 50.46 Appendix K methodology for the safety analysis. Today, in order to bring the analysis results closer to physical phenomena. The Best-Estimate Plus Uncertainty (BEPU) analysis approach is becoming more popular. The MSLB accident research will be divided into two part, each of which presents the results relating to one of the research questions. First part of the thesis research the physical phenomena which emerged from the basic MSLB accident analysis. Second part will complete uncertainty concern will be performed in this research. In addition to the boundary condition uncertainty, model uncertainty related to two phase flow model in RELAP5 code are further considered. RELAP5 code had developed seven interfacial drag coefficient uncertainty factors, including bubbly flow drag, slug flow drags, annular-mist flow drags, dispersed flow drag, re-flood drag and two-phase friction and form loss. With randomly adjusting this developed two-phase flow drag factors, the model uncertainty can be also considered. After realizing the effect of these two-phase flow model uncertainties, a completed simulation model which considers both the boundary condition and model uncertainty will be developed. As a result, the predictions of the simulation model may become closer to the real world. At last, with the RELAP5/MOD3.3, DAKOTA and SNAP interface were combined successfully to perform the MSLB uncertainty analysis. In addition, this thesis adopts Python to capture uncertainty data at the same time.
摘要 ii
Abstract iii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
緒論 第一章 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 核能安全分析之必要性 2
1.4 論文架構 3
第二章 文獻回顧與研析 4
2.1 馬鞍山核電廠簡介 4
2.2 國際間MSLB案例安全分析研究研析 4
2.3 不準度分析方法論 6
2.3.1 不準度分析理論 6
2.3.2 決定不準度參數 7
2.3.3 不準度區間和參數分布之選擇 7
2.3.4 模擬次數 8
2.3.5 隨機抽樣方法 9
2.3.5.1蒙地卡羅抽樣(Monte-Carlo Sampling)[14] 9
2.3.5.2 拉丁超立方抽樣 (Latin Hypercube Sampling)[15, 16, 17] 10
2.4 相關係數理論 10
2.4.1 皮爾森積差相關係數理論 10
2.4.2 斯皮爾曼等級相關係數 11
第三章 分析程式介紹 24
3.1 RELAP5/MOD3.3熱水流分析程式 24
3.1.1 RELAP5程式簡介 24
3.1.2 RELAP5/3.3雙相流統御方程式 24
3.1.3 RELAP5臨界流模式 27
3.1.4 熱傳模式 31
3.2 SNAP圖形化介面程式 33
3.3 DAKOTA程式[41] 34
第四章 RELAP5/MOD3.3 MSLB模式建立 47
4.1 核能系統[11] 47
4.2 熱水流組件與熱結構組件 49
4.3 電廠控制元件 50
4.4 反應器功率計算 51
第五章 馬鞍山核電廠RELAP5/MOD3.3主蒸汽管路破裂事故基本案例分析 58
5.1 主蒸汽管管路破裂事故案例 58
5.2 MSLB初始條件假設 59
5.3 MSLB基本案例分析結果 60
5.4 靈敏度分析 61
5.4.1 沖放係數靈敏度分析 61
5.4.2 臨界流模式靈敏度分析 62
5.5 主蒸汽管路破裂事故結論 63
第六章 最佳化估算於不準度分析 76
6.1 不準度分析 76
6.2 不準度分析結果 78
第七章 結論與建議 93
7.1 結論 93
7.2 建議 94
參考文獻 95
附錄 99
1. Taiwan Power Company, “Final Safety Analysis Report for Maanshan Nuclear Power Station Units 1&2 (FSAR)”, Taiwan Power Company, Republic of China (Taiwan), 2017.
2. Chunkuan Shih, Jong-Rong Wang, Shao-Wen Chen, Hao-Chun Chang, NUREG/IA-0472, RELAP5/MOD3.3 Model Assessment of Maanshan Nuclear Power Plant with SNAP Interface.
3. Gamble, R., “ESBWR Technology Program: Test Program. NRC-GE Meeting., Rockville, Maryland.”, 2002.
4. J.F. Villanueva, S. Carlos, S. Martorell, F. Sánchez, NUREG/IA-0486, Simulation of the G3.1 Experiment at PKL Facility Using RELAP5/Mod3.3
5. Liang-Che Dai, “Short-term pressure and temperature MSLB response analyses for large dry containment of the Maanshan nuclear power station.” Nuclear Engineering and Design, 280 (2014) 86–93
6. Jun Yang, “Best Estimate Plus Uncertainty analysis of a large break LOCA on Generation III reactor with RELAP5.” Annals of Nuclear Energy, 127 (2019) 326–340, 2019
7. IAEA-TECDOC-1332, “Safety margins of operating reactors Analysis of uncertainties and implications for decision making”, January 2003.
8. Briggs L.L., “Uncertainty Quantification Approaches for Advanced Reactor Analyses, Argonne National Laboratory, Lemont, Illinois.”, 2008, p.32.
9. Seung Wook Lee et al, “Analysis Of Uncertainty Quantification Method By Comparing Monte-Carlo Method And Wilks’ Formula”, Nuclear Engineering And Technology, vol.4,2014, p.46.
10. WCAP-17054-P, “Best-Estimate Analysis of the Large-Break Loss-of-Coolant Accident for Maanshan Units 1 and 2 Nuclear Power Plant Using the ASTRUM Methodology”, June 2009
11. 台灣電力公司第三核能發電廠, 「核能發電訓練基本教材:壓水式反應器介紹」,(2015年)。
12. S. S. Wilks, “Determination of Sample Sizes for Setting Tolerance Limits”, 1941.
13. Guba A., M. Makai, and L. Pal, “Statistical aspects of best estimate method - I”, Reliability Engineering and System Safety, vol.80, 2003, p.217-232.
14. R. G. LINFORD, C. OSGOOD, “MONTE CARLO METHODS AND LATTICE DISCONTINUITIES”, Surface Science, 34, 1972, pp. 482-498.
15. Davis, M. W., 1987, “Production of conditional simulations via the LU triangular decomposition of the covariance matrix: Math. Geol.”, v. 19, no. 2, p. 91–98.
16. McKay, M.D., “Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics.”, American Statistical Association, May 1979
17. McKay, M.D., “Latin hypercube sampling as a tool in uncertainty analysis of computer models”, Winter Simulation Conference, 557-564, 1992
18. R. F. Bartlett, “Linear Modelling of Pearson's Product Moment Correlation Coefficient: An Application of Fisher's z-Transformation”, Journal of the Royal Statistical Society. Series D (The Statistician), Vol. 42, No. 1, 1993, pp. 45-53.
19. Myers, Jerome L., “Well, Arnold D., Research Design and Statistical Analysis 2nd, Lawrence Erlbaum”: 508, 2003, ISBN 0-8058-4037-0
20. Maritz. J.S. (1981) Distribution-Free Statistical Methods, Chapman & Hall. ISBN 0-412-15940-6. (page 217)
21. Yule, G.U and Kendall, M.G. (1950), “An Introduction to the Theory of Statistics”, 14th Edition (5th Impression 1968). Charles Griffin & Co. page 268
22. Piantadosi, J.; Howlett, P.; Boland, J. “Matching the grade correlation coefficient using a copula with maximum disorder”, Journal of Industrial and Management Optimization, 3 (2), 305–312, 2007
23. Lehman, Ann (2005). “Jmp For Basic Univariate And Multivariate Statistics: A Step-by-step Guide. Cary”, NC: SAS Press. p. 123.
24. Glaeser, H. (2008). “GRS method for uncertainty and sensitivity evaluation of code results and applications.”, Science and Technology of Nuclear Installations, 2008.
25. 常態分布,維基百科網站,https://zh.wikipedia.org/wiki/%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83
26. 均勻分布,維基百科網站,https://zh.wikipedia.org/wiki/%E9%80%A3%E7%BA%8C%E5%9E%8B%E5%9D%87%E5%8B%BB%E5%88%86%E5%B8%83
27. 對數常態分布,維基百科網站,https://zh.wikipedia.org/wiki/%E5%AF%B9%E6%95%B0%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83
28. 蒙地卡羅方法,維基百科網站,https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE%85%E6%96%B9%E6%B3%95
29. G. L. Mesina, “A History of RELAP Computer Codes.”, Nuclear Science and Engineering. 2017
30. RELAP5/MOD3.3 CODE MANUAL VOLUME I: CODE STRUCTURE, SYSTEM MODELS, AND SOLUTION METHODS, February 2019
31. P. S. Anderson, P. Astrup, L. Eget, and O. Rathman. “Numerical Experience with the Two-Fluid Model RISQUE.” Proceedings from Topical Meeting on Thermal Reactor Safety, Sun Valley, ID.July 31-August 4, 1977.
32. N. Zuber. “On the Dispersed Two-Phase Flow in the Laminar Flow Regime.” Chemical Engineering Science. 19. 1964. pp. 897-917.
33. L. Van Wijngaarden. “Hydrodynamic Interaction between Gas and Bubbles in Liquid.” Journal of Fluid Mechanics. 77. 1. 1976. pp. 27-44.
34. J.A. Trapp, V.H. Ransom, “A chocked-flow calculation criterion for nonhomogeneous, nonequilibrium, two-phase flows”, Idaho National Engineering Laboratory, April 27, 1982.
35. Henry, R. E., & Fauske, H. K., “The Two-Phase Critical Flow of One-Component Mixtures in Nozzles, Orifices, and Short Tubes”, Journal of Heat Transfer, vol. 93, pp.179-187, 1971
36. RELAP5/MOD3.3 CODE MANUAL VOLUME V: USER’S GUIDELINES, February 2019
37. Moody, F. J., “Maximum Flow Rate of a Single Component, Two-Phase Mixture”, Journal of Heat Transfer, 87(1), 134, 1965
38. Maneely, D. J., “A Study of t h e Expansion Process of Low Quality Steam Through a de Laval Nozzle”, UCRL-6230, University of California Radiation Laboratory, 1962.
39. Neusen, K. F., “Optimizing of Flow Parameters for the Expansion of Very Low Quality0 Steam”, UCRL-6152, University of California Radiation Laboratory, 1962.
40. Applied Programming Technology, Symbolic Nuclear Analysis Package (SNAP) User's Manual, Applied Programming Technology Inc., in Bloomsburg, 2007.
41. Brian M. Adams et al, Dakota, “A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation”, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User's Manual, Sandia National Laboratories, Albuquerque, 2014.
42. 陳宇民,「量化核三廠功率提升後中破口冷卻水流失事故之安全餘裕與爐心熔損頻率」,國立清華大學核子工程與科學研究所,博士論文,中華民國一百零七年
43. RELAP5/MOD3.3 CODE MANUAL VOLUME IV: MODELS AND CORRELATIONS, February 2019
44. Lukasz Sokolowski, Tomasz Kozlowski, NUREG/IA-0401, “Tomasz Kozlowsk, Assessment of Two-Phase Critical Flow Models Performance in RELAP5 and TRACE Against Marviken Critical Flow Tests”, 2012
45. Sung Gil Shin, Jeong Ik Lee, “Comparisons of Constitutive Relation models between RELAP5 and TRACE”, 2019 CAMP Fall meeting
46. M. Kynčl, R. Pernica, NUREG/IA-0435, “Assessment of RELAP5/MOD3.3 and TRACE V5.0 Computer Codes against LOCA Test Data from PSB-VVER Test Facility”, 2013
47. Byung Gil, “Huh Best-Estimate Calculation for LBLOCA Analysis of APR1400 Using TRACE Code”, Fall 2018 CAMP Meeting, 2018
(此全文20250824後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *