帳號:guest(3.138.174.120)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林家年
作者(外文):Lin, Chia-Nien
論文名稱(中文):加速器驅動次臨界系統之散裂靶與次臨界爐心特性研究
論文名稱(外文):An investigation of spallation target and subcritical core characteristics for accelerator-driven subcritical system
指導教授(中文):梁正宏
指導教授(外文):Liang, Jenq-Horng
口試委員(中文):趙得勝
陳健湘
宋大崙
口試委員(外文):Chao, Der-Sheng
Chen, Chien-Hsiang
Sung, Ta-Lung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:107013509
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:86
中文關鍵詞:加速器驅動次臨界系統次錒系元素核轉換中子增殖因子
外文關鍵詞:accelerator-driven subcritical systemminor actinidetransmutationmultiplication factor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:71
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨於研析加速器驅動次臨界系統(Accelerator-Driven System,簡稱 ADS)的散裂靶(spallation target)與次臨界爐心(subcritical core)的物理特性。所探討的 ADS 為中國西安交通大學提出的 Highly Efficient Industrial Transmuter(HEIT),其係使用 1.5 GeV 的質子加速器來產生外加中子源,並以鉛鉍合金(Lead-Bismuth Eutectic,LBE)作為冷卻劑,可提供 800 MW 的熱功率。本研究使用蒙地卡羅模擬粒子遷移的計算程式 MCNP 6.1,並搭配 ENDF/B-VII 截面庫與物理模型來進行所有計算。

本論文所建立的 ADS 模型,先將其計算結果與西安交大的參考文獻結果進行比較及驗證,以確保所建立模型的可靠性。而進一步的計算分析則分別以變動散裂靶與次臨界爐心中的不同參數進行之。在散裂靶的分析中,歸納出最佳化的散裂靶幾何參數。另外,分別針對有源與無源系統的爐心中子增殖特性進行探討,結果顯示,燃料中 Pu 含量與燃料棒半徑的改變,將導致劇烈的反應度變動;中子源的載入並不會對系統反應度造成顯著的影響。最後,計算有源與無源系統的爐心中子能譜與徑、軸向中子通量,並對其中之差異進行分析。
This study aims to investigate the neutronics characteristics of the spallation target and subcritical core in an accelerator driven subcritical system(ADS). The simulation model is based on HEIT which was proposed by Xi'an Jiaotong University. In essence, HEIT uses a 1.5 GeV proton accelerator as the external source and lead-bismuth eutectic(LBE)as the coolant. The full power of HEIT is 800 MW. The MCNP 6.1 computer code together with the ENDF/B-VII cross-section library and high energy physics model was employed to perform all the calculations.
The ADS model employed in this study was established based on the design of Xi'an Jiaotong University and had been compared with the associated results shown in literatures for benchmark reasons. For the spallation target, the optimized geometric parameters of spallation target are proposed. Furthermore, the multiplication characteristics of the system with or without external source are discussed. The results revealed that reactivity is very sensitive to the plutonium content and fuel pin radius, and the introduction of external source has no apparent effect on the reactivity change on subcritical system. Finally, the neutron spectrum and neutron flux of the system with or without external source are calculated and investigated in this study.
摘要----i
ABSTACT----ii
致謝----iii
目錄----iv
表目錄----vi
圖目錄----vii
第一章、 緒論----1
第二章、 文獻回顧----3
2.1 國際發展歷史----3
2.2 各國發展概況----5
2.2.1 比利時----5
2.2.2 中國----6
2.2.3 日本----8
2.2.4 印度----9
2.3 基本概念----10
2.3.1 散裂過程----11
2.3.2 散裂靶特性----13
2.3.3 次臨界爐心----13
2.3.4 次錒系元素核轉換條件----16
2.4 參數介紹----19
2.4.1有效中子增殖因子(keff)----19
2.4.2 源中子增殖因子 (ks)----20
2.4.3 中子重要性 (Neutron importance)----21
2.4.4 中子源效率 ("φ*" )----21
2.5 研究動機----24
第三章、 模擬計算程式介紹----27
3.1 爐心臨界計算----28
3.2 加速器固定源計算----30
3.3 爐心燃耗計算----31
第四章、 HEIT模型建立----35
4.1 HEIT模型介紹與建立----35
4.2 靈敏度測試----41
4.3 HEIT驗證計算(Benchmark)----44
4.3.1 有效增殖因子驗證計算----44
4.3.2 燃耗驗證計算----45
4.3.3 中子產率驗證計算----46
第五章、 HEIT模型之散裂靶特性研究----50
5.1 散裂靶模型----50
5.2 靶材幾何對中子產率的影響----51
5.3 散裂靶中子特性分析----57
第六章、 HEIT模型之次臨界爐心特性研究----61
6.1 爐心增殖特性分析----61
6.2 外加源增殖特性分析----68
6.3 爐心中子特性分析----73
第七章、 結論與未來建議----79
7.1 結論----79
7.2 未來建議----81
7.2.1 中子源效率研究----81
7.2.2 核轉換效率研究----82
參考文獻----83
[1] V. Anastasov, M. Betti, F. Boisson, F. Depisch, F. Houlbreque, R. Jeffree, I. Khamis, S. Lattemann, J. Miquel and S. Nisan, “Status of minor actinide fuel development”, IAEA Nuclear energy series, 2009.

[2] S. Widder, “Benefits and concerns of a closed nuclear fuel cycle”, IEEE Journal of renewable and sustainable energy 2, 062801, 2010.

[3] Z. Zhao, “Selected works of basic research on the physics and technology of accelerator driven clean nuclear power system”, China nuclear industry audio & visual publishing house, 2002.

[4] R. Olwell, “The plutonium story: the journals of professor Glenn T. Seaborg, 1939-1946 by Glenn Theodore Seaborg”, Battelle press, 1996.

[5] R.H. Goeckermann, I. Perlman, “Characteristics of bismuth fission with high energy particles”, Physical review Vol. 73, pp.1127-1128, 1948.

[6] G. Bartholomew, P. Tunnicliffe, “The AECL study for an intense neutron-generator(technical details)”, Atomic energy of Canada limited, 1966.

[7] A. Croff, J. Blomeke, B. Finney, “Actinide partitioning-transmutation program final report. I. Overall assessment”, Oak ridge national laboratory, 1980.

[8] G. Van Tuyle, H. Takahashi, M. Todosow, A. Aronson, G. Slovik, W. Horak, “The PHOENIX concept, Brookhaven national laboratory, 1991.

[9] H.A. Abderrahim, P. Baeten, D. De Bruyn, R. Fernandez, “MYRRHA - A multi-purpose fast spectrum research reactor”, Energy conversion and management Vol. 63, pp.4-10, 2012.

[10] T. Peng, L. Gu, D. Wang, J. Li, Y. Zhu, C. Qin, “Conceptual design of subcritical reactor for China initiative accelerator driven system”, Atomic energy science and technology Vol. 51, pp.2235-2240, 2017.



[11] K. Tsujimoto, H. Oigawa, N. Ouchi, K. Kikuchi, Y. Kurata, M. Mizumoto, T. Sasa, S. Saito, K. Nishihara, M. Umeno, “Research and development program on accelerator driven subcritical system in JAEA”, Journal of nuclear science and technology Vol. 44, pp. 483-490, 2007.

[12] P.K. Nema, P. Singh, P. Satyamurthy, S.B. Degweker, V.K. Handu, “ADS programme and associated developments in India-roadmap and status of activities”, ADS/INT-03, Bhabha atomic research centre, Mumbai, India, 2009.

[13] P. Seltborg, “Source efficiency and high-energy neutronics in accelerator-driven systems”, Department of nuclear and reactor physics royal institute of technology stockholm, 2005.

[14] G.P. Barros, C. Pereira, M.A. Veloso, A.L. Costa, P.A. Reis, “Neutron production evaluation from a ADS target utilizing the MCNPX 2.6.0 code”, Brazilian journal of physics Vol. 40, pp. 414-418, 2010.

[15] S. Hashemi-Nezhad, W. Westmeier, M. Zamani-Valasiadou, B. Thomauske, R. Brandt, “Optimal ion beam, target type and size for accelerator driven systems: Implications to the associated accelerator power”, Annals of nuclear energy Vol. 38, pp. 1144-1148, 2011.

[16] Y. Kadi, J. Revol, “Design of an accelerator-driven system for the destruction of nuclear waste”, European organization for nuclear research, CERN, 2003.

[17] X. Jiang, Z. Xie, “MC-depletion code system and its application for IAEA ADS benchmark”, Selected works of basic research on the physics and technology of accelerator driven clean nuclear power system, pp.16-24, 2002.

[18] X. Li, S. Zhou, Y. Zheng, K. Wang, H. Wu, “Preliminary studies of a new accelerator-driven minor actinide burner in industrial scale”, Nuclear engineering and design Vol. 292, pp. 57-68, 2015.

[19] S. Degweker, P. Bhagwat, S. Krishnagopal, A. Sinha, “Physics and technology for development of accelerator driven systems in India”, Progress in nuclear energy Vol. 101, pp. 53-81, 2017.


[20] P. Seltborg, J. Wallenius, K. Tucek, W. Gudowski, “Definition and application of proton source efficiency in accelerator-driven systems”, Nuclear science and engineering Vol. 145, pp. 390-399, 2003.

[21] Z. Zhao, Z. Chen, H. Chen, “Preliminary optimization of proton energy and target for Lead-Bismuth Eutectic target of a demonstration ADS”, Progress in Nuclear Energy Vol. 71, pp. 117-121, 2014.

[22] H. Shahbunder, C.H. Pyeon, T. Misawa, J.-Y. Lim, S. Shiroya, “Subcritical multiplication factor and source efficiency in accelerator-driven system”, Annals of nuclear energy, Vol. 37, pp. 1214-1222, 2010.

[23] X. Shang, G. Yu, J. Song and K. Wang, “A direct calculation method for subcritical multiplication factor in reactor Monte Carlo code RMC”, Annals of nuclear energy Vol. 118, pp81-91, 2018.

[24] T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L. J. Cox, J. Durkee, J. Elson, M. Fensin, R. A. Forster, J. Hendricks, H. G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis, “Initial MCNP6 release overview”. Nuclear technology 180, pp 298-315, 2012.

[25] S.G. Mashnik, J.S. Bull, H.G. Hughes, R.E. Prael, A.J. Sierk. “Current status of MCNP6 as a simulation tool useful for space and accelerator applications”, AIP conference proceedings, pp. 706-708, 2013.

[26] S.G. Mashnik, “Validation and verification of MCNP6 against high-energy experimental data and calculations by other codes. I. the CEM testing primer”, Los Alamos national laboratory, 2011.

[27] C. Fazio, V. Sobolev, A. Aerts, S. Gavrilov, K. Lambrinou, P. Schuurmans, A. Gessi, P. Agostini, A. Ciampichetti, L. Martinelli, “Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies”, Nuclear energy agency, 2015.

[28] B. Brown, R.D. Mosteller, “Advances in monte carlo criticality calculations”, LA-UR-05–5618, Los Alamos national laboratory, 2005.

[29] S. Zhou, H. Wu, Y. Zheng, “Flexibility of ADS for minor actinides transmutation in different two-stage PWR-ADS fuel cycle scenarios”, Annals of nuclear energy, Vol. 111, pp. 271-279, 2018.

[30] Y. Cao, Y. Gohar, “Monte Carlo fuel burnup analyses of the accelerator-driven subcritical systems”, Annals of nuclear energy Vol. 131, pp. 297-304, 2019.

[31] T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassò, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, V. Vlachoudis, “The FLUKA code: developments and challenges for high energy and medical applications”. Nuclear data sheets 120, pp. 211-214, 2014.

[32] V. Yurevich, “Production of neutrons in thick targets by high-energy protons and nuclei”, Physics of particles and nuclei Vol. 41, pp 778-782, 2010.

[33] N. Xoubi, “Neutronic design study of accelerator driven system(ADS)for Jordan subcritical reactor as a neutron source for nuclear research”, Applied radiation and isotopes Vol. 131, pp. 71-76, 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *