帳號:guest(3.15.193.249)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈柏如
作者(外文):Shen, Bo-Ru
論文名稱(中文):利用TRACE程式建立金山電廠除役期間用過燃料池模式與安全分析
論文名稱(外文):Use of TRACE to Establish Chinshan Spent Fuel Pool Model in Decommission Phase and Apply in Safety Analysis
指導教授(中文):陳紹文
王仲容
指導教授(外文):Chen, Shao-Wen
Wang, Jong-Rong
口試委員(中文):林浩慈
許文勝
口試委員(外文):Lin, Hao-Tzu
Hsu, Wen-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:107013505
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:核能一廠除役階段用過燃料池嚴重事故
外文關鍵詞:Chinshan spent fuel poolSevere accidentDecommission Phase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:254
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  本研究使用最佳化熱水流估算程式TRACE成功建立除役期間之金山電廠用過燃料池分析模式,並運用此模型分析除役期間用過燃料池遭遇喪失冷卻水(大破口)且喪失正常冷卻系統假設事故下之熱水流現象,並探討國際報告NEI-0612所建議之救援措施在此事故下之有效性。除此之外,此分析方法與模型亦帶入台灣電力公司所發布之除役計畫、國際上用過燃料池熱水流分析報告(包含NUREG-1738與NSIR-2015-001)之假設與邊界條件分別進行模擬,藉由模擬結果的再現性與比對,驗證該分析方法之有效性與模型可信度。
  首先本研究使用美國核管會標準審查方案報告ASB 9-2內之衰變熱功率計算公式作為基礎,且根據不同週期之冷卻時間進行計算,以評估金山核能電廠現況之總衰變熱,並將該衰變熱表建立至模型中,以模擬後續嚴重事故,除此之外,亦根據該公式預測未來十年內核能一廠用過燃料池之總衰變熱,以供相關單位參考。在後續事故中,考慮到冷卻水流失事故之模擬結果與破口大小、位置皆有密切相關性,在基本案例中以初始洩露量500gpm以及破口高度約為燃料池底部上方0.93公尺進行模擬。藉由嚴重事故分析之結果,可以估算運轉方在發生事故後能擁有多少餘裕時間準備救援措施。除了基本案例分析以外,也針對初始破口流量,以及鋯水反應氧化計算方式進行靈敏度分析。
  綜合以上所述之模擬結果,用過燃料池在遭遇喪失冷卻水(大破口)且喪失正常冷卻系統嚴重事故下,仍可擁有長達62小時之餘裕時間可準備後續救援措施,即使於破口流量最嚴重之案例中(約為700gpm),也仍有59.59小時之準備時間。值得一提的是,由於此模型中沿用了國際上熱水流分析報告之結論與方法論,包含絕熱、燃料束與束之間無熱傳、空氣對流條件較差等保守條件,此模擬結果將具有一定保守度。除此之外,由於金山電廠已停機逾四年,其總衰變熱與剛停機時之衰變熱已不可同日而語,根據後續救援措施之有效性分析中可知,在此餘裕時間內,若能成功執行救援措施,燃料護套之溫度亦能良好地控制在低溫,於整個事故過程皆無升溫至1088.7K。而根據計算鋯水反應氧化熱釋放率關係式之不同,其模擬結果也將有所差異,在靈敏度分析案例中,Baker-Just correlation相對於Cathcart-Pawel correlation之計算結果較為保守,在TRACE模擬中,其開始明顯發生鋯水反應之時間點亦有所提前,在最終達到1088.7K之時間點約提前3小時。
In this research, I used the thermal hydraulic code, TRACE which is developed by US NRC, and coupling with SNAP (a graphical interface code) to establish a Chinshan spent fuel pool model and compare the results with decommission plan announced by Taiwan Power Company (Taipower). Based on this model, the severe accident including station blackout (SBO), loss of coolant water accident (LOCA) had been analyzed in this study. Besides, the capability of the mitigation strategy which is recommended by the NEI-0612 report to deal with the sever accident is evaluated in this research. In order to proof the accuracy of this methodology in establishing the heat transfer model, the same assumption of decommission plan and other analysis report of spent fuel pool (including NUREG-1738 and NSIR-2015-001) are used to rebuild a same model with the same boundary conditions. The simulation results with the same assumption shows that the prediction of TRACE are consistent with the results of the decommission plan and analysis reports. And these results implies the TRACE/SNAP model that I established in this research has a respectable accuracy.
  First of all, this study used the calculation formula of decay heat in the ASB 9-2 standard review plan report of the US Nuclear Regulatory Commission as the basis to discuss the decay heat of the spent fuel rod and calculate it according to the cooling time of different cycles to evaluate the total decay heat of Chinshan Nuclear Power Plant spent fuel pool, and brought this decay heat table into the model to simulate subsequent serious accidents. In addition, according to the formula, the total decay heat of the spent fuel pool is also predicted in the next ten years.
  The analysis results show that even if the extreme accident that SBO and LOCA accident occurred simultaneously, the temperature of spent fuel cladding will not exceed 1088.7K for about three days. It is due to the total decay heat is very low compare with the decay heat just after nuclear power plant shutdown. However, as long as we take the mitigation strategy to spray the water above the top of the fuel in such server accident within three days, the spent fuel pool can restore to a safe state.
摘要 i
ABSTRACT iii
致謝 v
表目錄 ix
圖目錄 x
名詞縮寫表 xiii
符號表 xiv
第一章 緒論 1
1.1研究動機與方法論 1
1.2論文架構 2
第二章 文獻回顧 4
2.1國內外用過燃料池安全分析 4
2.2 TRACE模擬程式文獻回顧 14
2.3用過燃料束之衰變熱計算方法文獻回顧 20
第三章 模擬程式與電廠介紹 27
3.1 金山電廠 27
3.2 除役期間金山用過燃料池 27
3.2.1 用過燃料池簡介 27
3.2.2 事故救援設備介紹 28
3.3 TRACE熱水流分析程式 29
3.3.1 熱水流理論介紹 30
3.3.2 降幅水位計算模型 32
3.3.3 熱傳導模型理論介紹 34
3.4 SNAP 圖形化介面程式 35
第四章 建立除役期間用過燃料池分析模式 36
4.1 TRACE分析模式建立 36
4.2 用過燃料池分析模式驗證 51
4.2.1 國際安全分析文獻再現性 51
4.2.2 金山核能電廠除役計畫熱水流分析再現性 60
4.3 金山核能電廠除役期間燃料棒衰變熱計算 64
第五章 金山核能電廠暫態案例安全分析 70
5.1 除役期間用過燃料池喪失長期冷卻能力與冷卻水流失事故 70
5.1.1 基本介紹與初始條件 70
5.1.2 案例分析結果 70
5.2 除役期間用過燃料池發生嚴重事故且實施後續救援措施 74
5.2.1 NEI-0612 救援措施介紹 74
5.2.2 案例分析結果 77
5.3 靈敏度分析 79
5.3.1 初始破口流量案例分析 79
5.3.2 氧化熱計算公式案例分析 82
第六章 結論與未來建議 85
6.1 結論 85
6.2 未來建議 86
參考資料 88


[1]行政院原子能委員會核能管制處, 「核一廠核能安全總體檢近期檢討議題總結現場查證報告」, 中華民國 101 年1 月
[2]U.S. Nuclear Regulatory Commission, “Technical Study of Spent Fuel Pool Accident Risk at Decommissioning Nuclear Power Plants,” NUREG1738, February 2001.
[3]U.S. Nuclear Regulatory Commission, “Spent Fuel Assembly Heat Up Calculations In Support Of Task 2 Of User Need NSIR-2015-001”, April 2016.
[4]U.S. Nuclear Regulatory Commission, “Consequence Study of a Beyond-Design-Basis Earthquake Affecting the Spent fuel Pool for a U.S. Mark I Boiling Water Reactor”, NUREG-2161, September 2014
[5]Kewaunee Power Station, “Calculation 2013-07050, Revision 2 Maximum Cladding Temperature Analysis for an Uncovered Spent Fuel Pool with No Air Cooling”, Mar 2012
[6]Electric Power Research Institute (EPRI), “Summary of the EPRI Early Event Analysis of the Fukushima Daiichi Spent Fuel Pools Following the March 11, 2011 Earthquake and Tsunami in Japan”, May 2012
[7]Argonne National Laboratory, ”Steam Oxidation Kinetics of Zirconium Alloys”, June 11, 2002.
[8]L. Baker and L. C. Just, "Studies of Metal-Water Reactions at High Temperatures; III. Experimental and Theoretical Studies of the Zirconium-Water Reaction," ANL-6548, May 1962.
[9]J. V. Cathcart, R. E. Pawel, R. A. McKee, R. E. Druscel, G. J. Yurek, J. J. Cambell and S. H. Jury, "Zirconium Metal-Water Oxidation Kinetics IV. Reaction Rate Studies", ORNL/NUREG-17, Aug. 1977.
[10]U.S. Nuclear Regulatory Commission,” Best-estimate Calculations of Emergency Core Cooling System Performance”, Regulatory guide 1.157, May 1989.
[11]U.S. Nuclear Regulatory Commission,”Status of NRC Code Development”, Fall CAMP Meeting, December 11, 2018
[12]Sofia Carlos, F. Sanchez-Saez, Jose F. Villanueva, Sebastian Martorell, “Spent fuel pool analysis using TRACE code”, January 2012
[13]Sofia Carlos, F. Sanchez-Saez, S.Martorell, “Use of TRACE best estimate code to analyze spent fuel storage pools safety”, November 2014
[14]Sofia Carlos, F. Sanchez-Saez, S.Martorell, ” Uncertainty analysis of a loss of cooling and loss of coolant accident in a spent fuel pool using TRACE”, April 2020
[15]The Pennsylvania State University Department of Mechanical and Nuclear Engineering, “Spent Fuel Pool Analysis of a BWR-4 Fuel Bundle Under Loss of Coolant Conditions Using TRACE.”, May 2013
[16]Division of System Analysis, Office of Nuclear Regulatory Research;, Investigations of Zirconium Fires during Spent Fuel Pool LOCAs, Washington D.C.: United States Nuclear Regulatory Comission, 2013.
[17]Oak Ride National Laboratory, “Technical Support for a Proposed Decay Heat Guide Using SAS2H/ORIGEN-S Data”, NUREG-5625, July 1994
[18]U.S. Nuclear Regulatory Commission, "US Commercial Spent Nuclear Fuel Assembly Characteristics: 1968-2013.", NUREG/CR-7227, September 2016
[19]U.S. Nuclear Regulatory Commission, “Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition-Auxiliary Systems”, NUREG-0800, Chapter 9. July 1981.
[20]行政院原子能委員會, 「核一廠除役計畫書」
[21]行政院原子能委員會, 「核能一廠1號機視察報告第一至二十七次」.
[22]Applied Programming Technology, Inc., "Symbolic Nuclear Analysis Package (SNAP)," Bloomsburg PA, 2012.
[23]行政院原子能委員會核能管制處, 「我國核電廠因應日本福島第一核電廠事故總體檢”」, 2011年6月
[24]Division of Safety Analysis, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, "TRACE V5.0 USER'S MANUAL Volume 1.
[25]王惠偵,「金山電廠用過燃料池TRACE模式建立與應用」,國立清華大學核子工程與科學研究所,碩士論文,中華民國一百零三年六月。
[26]Division of Safety Analysis, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, "TRACE V5.0 USER'S MANUAL Theory.
[27]核能研究所, 「用過核子燃料長期乾式貯存政策可行性研究」,中華民國九十九年十一月.
[28]NEI , “B.5.b Phase 2&3 Submittal Guideline” , NEI 06-12 Rev. 2 , Dec 2006.
[29]沈柏如、陳紹文、楊融華、王仲容、施純寬,”使用TRACE模擬程式建立金山核能電廠除役過渡階段之用過燃料池模型與嚴重事故分析”,中國機械工程學會第三十六屆全國學術研討會, 臺北 (Dec.7-8, 2019).
[30]Bo-Ru Shen, Shao-Wen Chen, Jong-Rong Wang, Chunkuan Shih, Jung-Hua Yang,”Simulate and Analyze the Severe Accident of Chinshan Spent Fuel Pool in Transition Period of Decommission by TRACE Code”, International Topical Meeting on Advances in Thermal Hydraulics (ATH’2020)(OCT.20-23,2020).
[31] U.S. Nuclear Regulatory Commission, “Validation of a Computational Fluid Dynamics Method Using Vertical Dry Cask Simulator Data” NUREG2238, June 2020
(此全文20250824後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *