|
[1] L. E.Gerweck andS.V.Kozin, “Relative biological effectiveness of proton beams in clinical therapy,” Radiother. Oncol., vol. 50, no. 2, pp. 135–142, 1999. [2] R. A.Britten et al., “Variations in the RBE for Cell Killing Along the Depth-Dose Profile of a Modulated Proton Therapy Beam,” Radiat. Res., vol. 179, no. 1, pp. 21–28, 2013. [3] H.Paganetti et al., “Relative biological effectiveness (RBE) values for proton beam therapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 53, no. 2, pp. 407–421, 2002. [4] H.Paganetti, “Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer,” Phys. Med. Biol., vol. 59, no. 22, pp. R419–R472, 2014. [5] L. F.Fjæra et al., “Linear energy transfer distributions in the brainstem depending on tumour location in intensity-modulated proton therapy of paediatric cancer,” Acta Oncol. (Madr)., vol. 56, no. 6, pp. 763–768, 2017. [6] C. R.Peeler et al., “Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma,” Radiother. Oncol., vol. 121, no. 3, pp. 395–401, 2016. [7] J.Ödén, K.Eriksson, andI.Toma-Dasu, “Inclusion of a variable RBE into proton and photon plan comparison for various fractionation schedules in prostate radiation therapy,” Med. Phys., vol. 44, no. 3, pp. 810–822, 2017. [8] T.Underwood et al., “Can We Advance Proton Therapy for Prostate? Considering Alternative Beam Angles and Relative Biological Effectiveness Variations When Comparing Against Intensity Modulated Radiation Therapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 95, no. 1, pp. 454–464, 2016. [9] A. C.Knopf andA.Lomax, “In vivo proton range verification: A review,” Phys. Med. Biol., vol. 58, no. 15, pp. 131–160, 2013. [10] H.Paganetti, “Proton Relative Biological Effectiveness – Uncertainties and Opportunities,” Int. J. Part. Ther., vol. 5, no. 1, pp. 2–14, 2018. [11] 宋其勳, “以熱發光劑量計建立直線能量轉移量測系統,” 2018. [12] H. Y.Tsai, C. H.Sung, H. H.Chen, M. W.Lin, H. C.Huang, andS. L.Chang, “Clinical application of ionization density dependence of the glow curve for measuring linear energy transfer in therapeutic proton beams,” Radiat. Meas., vol. 127, no. 101, p. 106146, 2019. [13] D. A.Granville, N.Sahoo, andG. O.Sawakuchi, “Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams,” Phys. Med. Biol., vol. 61, no. 4, pp. 1765–1779, 2016. [14] V.Conte, P.Colautti, S.Chiriotti, D.Moros, M.Ciocca, andA.Mairani, “Mini-TEPC Microdosimetric Study of Carbon Ion Therapeutic Beams at CNAO,” EPJ Web Conf., vol. 153, pp. 3–6, 2017. [15] K.Takada et al., “Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy,” J. Radiat. Res., vol. 59, no. 1, pp. 91–99, 2018. [16] V.Conte et al., “Microdosimetry at the CATANA 62 MeV proton beam with a sealed miniaturized TEPC,” Phys. Medica, vol. 64, no. April, pp. 114–122, 2019. [17] C. E.Johnson, J. M.DeWitt, E. R.Benton, N.Yasuda, andE.V.Benton, “LET spectrum measurements in CR-39 PNTD with AFM,” AIP Conf. Proc., vol. 1336, pp. 637–642, 2011. [18] G. S.Sahoo, S. P.Tripathy, A. G.Molokanov, V. E.Aleynikov, S. D.Sharma, andT.Bandyopadhyay, “Measurement of LET (linear energy transfer) spectra using CR-39 at different depths of water irradiated by 171 MeV protons: A comparison with Monte Carlo simulation,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 818, pp. 14–19, 2016. [19] C.Reft, M.Pankuch, andH.Ramirez, “Thermoluminescent Detectors to Measure LET in Proton Beams,” Austin J. Med. Oncol., vol. 4, no. 1, 2017. [20] L. T.Tran et al., “The relative biological effectiveness for carbon, nitrogen, and oxygen ion beams using passive and scanning techniques evaluated with fully 3D silicon microdosimeters,” Med. Phys., vol. 45, no. 5, pp. 2299–2308, 2018. [21] G. S.Sahoo et al., “Measurement of neutron dose from p+181Ta reaction at different proton energies via LET spectrometry,” J. Radioanal. Nucl. Chem., no. 0123456789, 2019. [22] M.Ghergherehchi et al., “Dosimetry and microdosimetry of 10 e 220 MeV proton beams with CR-39 and their veri fi cations by calculation of reaction cross sections using ALICE , TALYS and GEANT4 codes,” vol. 47, pp. 410–416, 2012. [23] G. M.Akselrod, M. S.Akselrod, E. R.Benton, andN.Yasuda, “A novel Al2O3 fluorescent nuclear track detector for heavy charged particles and neutrons,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 247, no. 2, pp. 295–306, 2006. [24] P.Saadatkia, C.Varney, andF.Selim, “Trap Level Measurements in Wide Band Gap Materials by Thermoluminescence,” Lumin. - An Outlook Phenom. their Appl., 2016. [25] G.Massillon-JL, I.Gamboa-deBuen, andM. E.Brandan, “TL response of LiF : Mg,Ti exposed to intermediate energy 1 H, 3 He, 12 C, 16 O and 20 Ne ions,” J. Phys. D. Appl. Phys., vol. 40, no. 8, pp. 2584–2593, 2007. [26] J. T.Randall andM. H. F.Wilkins, “Phosphorescence and electron traps - I. The study of trap distributions,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 184, no. 999, pp. 365–389, 1945. [27] G. F. J.Garlick andA. F.Gibson, “The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors,” Proc. Phys. Soc., vol. 60, no. 6, pp. 574–590, 1948. [28] C. E.May andJ. A.Partridge, “Thermoluminescent kinetics of alpha-irradiated alkali halides,” J. Chem. Phys., vol. 40, no. 5, pp. 1401–1409, 1964. [29] A. J. J.Bos, “Theory of thermoluminescence,” Radiat. Meas., vol. 41, no. SUPPL. 1, 2006. [30] S.Som, S. K.Sharma, andS. P.Lochab, “Trapping Parameters of Thermally Stimulated Luminescence Glow Curves in Y2O3: Tb3+ Nanophosphor,” vol. 143, 2013, pp. 191–202. [31] N.Vana, W.Schöner, M.Fugger, andY.Akatov, “Absorbed dose measurement and let determination with TLDs in space,” Radiation Protection Dosimetry, vol. 66, no. 1–4. pp. 145–152, 1996. [32] Y. S.Horowitz, D.Satinger, E.Fuks, L.Oster, andL.Podpalov, “On the use of LiF:Mg,Ti thermoluminescence dosemeters in space - A critical review,” Radiat. Prot. Dosimetry, vol. 106, no. 1, pp. 7–24, 2003. [33] Y. S.Horowitz, A.Horowitz, L.Oster, S.Marino, H.Datz, andM.Margaliot, “Investigation of the ionisation density dependence of the glow curve characteristics of LIF:MG,TI (TLD-100),” Radiat. Prot. Dosimetry, vol. 131, no. 4, pp. 406–413, 2008. [34] M.Puchalska andP.Bilski, “An improved method of estimating ionisation density using TLDs,” Radiat. Meas., vol. 43, no. 2–6, pp. 679–682, 2008. [35] K. S.Chung, H. S.Choe, J. I.Lee, J. L.Kim, andS. Y.Chang, “A computer program for the deconvolution of thermoluminescence glow curves,” Radiat. Prot. Dosimetry, vol. 115, no. 1–4, pp. 345–349, 2005. [36] M.Puchalska andP.Bilski, “GlowFit-a new tool for thermoluminescence glow-curve deconvolution,” Radiat. Meas., vol. 41, no. 6, pp. 659–664, 2006. [37] J.Peng, Z. B.Dong, andF. Q.Han, “tgcd: An R package for analyzing thermoluminescence glow curves,” SoftwareX, vol. 5, pp. 112–120, 2015. [38] A.Parisi, O.VanHoey, P.Mégret, andF.Vanhavere, “Deconvolution study on the glow curve structure of LiF:Mg,Ti and LiF:Mg,Cu,P thermoluminescent detectors exposed to 1H, 4He and 12C ion beams,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 407, pp. 222–229, 2017. [39] Hi.Yasuda, “Glow-Peak Stability in 6LiF:Mg,Ti (TLD-600) Exposed to a Fe-ion beam,” J. Radiat. Res., vol. 42, no. 1, pp. 69–78, 2001. [40] B.Chandra, A. R.Lakshmanan, R. C.Bhatt, andK. G.Vohra, “Annealing and Re-Usability Characteristics of LiF (Mg,Cu,P) TLD Phosphor,” Radiat. Prot. Dosimetry, 1982. [41] J. B.Lasky andP. R.Moran, “Thermoluminescent response of LiF (TLD-100) to 5-30 keV electrons and the effect of annealing in various atmospheres,” Phys. Med. Biol., vol. 22, no. 5, p. 004, 1977. [42] A. J. J.Bos, R. N. M.Vijverberg, T. M.Piters, andS. W. S.McKeever, “Effects of Cooling and Heating Rate on Trapping Parameters in LiF: Mg, Ti Crystals,” J. Phys. D. Appl. Phys., vol. 25, no. 8, pp. 1249–1257, 1992. [43] E.Sonder, A. B.Ahmed, andE. A.Watson, “An assessment of using glow curve fitting procedures for obtaining information on exposure history,” Radiat. Prot. Dosimetry, vol. 81, no. 4, pp. 265–270, 1999. [44] P.Bilski, W.Gieszczyk, B.Obryk, andK.Hodyr, “Comparison of commercial thermoluminescent readers regarding high-dose high-temperature measurements,” Radiat. Meas., vol. 65, pp. 8–13, 2014. [45] T.Berger andM.Hajek, “On the linearity of the high-temperature emission from 7LiF:Mg,Ti (TLD-700),” Radiat. Meas., vol. 43, no. 9–10, pp. 1467–1473, 2008. [46] H.Datz, Y. S.Horowitz, L.Oster, andM.Margaliot, “Influence of background subtraction protocol on the high temperature thermoluminescence in LiF:Mg,Ti (TLD-100),” Radiat. Meas., vol. 46, no. 12, pp. 1440–1443, 2011. [47] H.Datz, Y. S.Horowitz, L.Oster, andM.Margaliot, “Characteristics of the high temperature thermoluminescence in LiF:Mg,Ti (TLD-100): The effects of batch history,” Radiat. Meas., vol. 45, no. 3–6, pp. 710–712, 2010. [48] N.Vana andP.Skrobanek, “Computer Supported Deconvolution of High Temperature Glow Peaks in LiF Thermoluminescence Dosemeters,” Radiat. Prot. Dosimetry, vol. 51, no. 3, pp. 191–200, 1994. [49] A. J. J.Bos, “An Intercomparison of Glow Curve Analysis Computer Programs: II. Measured Glow Curves,” Radiat. Prot. Dosimetry, 1994. [50] J.Ödén andP. M.DeLuca, “The use of a constant RBE=1.1 for proton radiotherapy is no longer appropriate.,” Med. Phys., vol. 12, no. 10, pp. 3218–3221, 2018. [51] E.Rørvik et al., “Exploration and application of phenomenological RBE models for proton therapy,” Phys. Med. Biol., vol. 63, no. 18, p. 185013, 2018. [52] D. J.Brenner andE. J.Hall, “Fractionation and protraction for radiotherapy of prostate carcinoma,” Int. J. Radiat. Oncol. Biol. Phys., vol. 43, no. 5, pp. 1095–1101, 1999. [53] N. H. A.Terry andJ.Denekamp, “RBE values and repair characteristics for colo-rectal injury after caesium 137 gamma-ray and neutron irradiation. II. Fractionation up to ten doses,” Br. J. Radiol., vol. 57, no. 679, pp. 617–629, 1984. [54] A. L.McNamara, J.Schuemann, andH.Paganetti, “A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data,” Phys. Med. Biol., vol. 60, no. 21, pp. 8399–8416, 2015. [55] M.Wedenberg, B. K.Lind, andB.Hårdemark, “A model for the relative biological effectiveness of protons: The tissue specific parameter α/β of photons is a predictor for the sensitivity to LET changes,” Acta Oncol. (Madr)., vol. 52, no. 3, pp. 580–588, 2013. [56] A.Carabe, S.España, C.Grassberger, andH.Paganetti, “Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver,” Phys. Med. Biol., vol. 58, no. 7, pp. 2103–2117, 2013. [57] B.Jones, “Towards achieving the full clinical potential of proton therapy by inclusion of LET and RBE models,” Cancers (Basel)., vol. 7, no. 1, pp. 460–480, 2015. [58] J. J.Wilkens andU.Oelfke, “A phenomenological model for the relative biological effectiveness in therapeutic proton beams,” Phys. Med. Biol., vol. 49, no. 13, pp. 2811–2825, 2004. [59] F.Tommasino et al., “A new facility for proton radiobiology at the Trento proton therapy centre: Design and implementation,” Phys. Medica, vol. 58, no. February, pp. 99–106, 2019. [60] A.Parisi et al., “A novel methodology to assess linear energy transfer and relative biological effectiveness in proton therapy using pairs of differently doped thermoluminescent detectors,” Phys. Med. Biol., vol. 64, no. 8, p. 085005, 2019. [61] G. O.Sawakuchi et al., “An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle,” Med. Phys., vol. 37, no. 9, pp. 4960–4970, 2010. [62] F.Alsanea, F.Therriault-Proulx, G.Sawakuchi, andS.Beddar, “A real-time method to simultaneously measure linear energy transfer and dose for proton therapy using organic scintillators,” Med. Phys., vol. 45, no. 4, pp. 1782–1789, 2018. [63] S.Hirayama et al., “An analytical dose-averaged LET calculation algorithm considering the off-axis LET enhancement by secondary protons for spot-scanning proton therapy,” Med. Phys., vol. 45, no. 7, pp. 3404–3416, 2018. [64] C.-C.Lee, S.-Y.Cai, T.-C.Chao, M.-J.Lin, andC.-J.Tung, “Depth dose characteristics of proton beams within therapeutic energy range using the particle therapy simulation framework (PTSim) Monte Carlo technique,” Biomed. J., vol. 38, no. 5, p. 408, 2015. [65] J.Perl, J.Shin, J.Schümann, B.Faddegon, andH.Paganetti, “TOPAS: An innovative proton Monte Carlo platform for research and clinical applications,” Med. Phys., vol. 39, no. 11, pp. 6818–6837, 2012. [66] Y. C.Lin, C. C.Lee, T. C.Chao, andH. Y.Tsai, “Ambient neutron dose equivalent during proton therapy using wobbling scanning system: Measurements and calculations,” Radiat. Phys. Chem., vol. 140, pp. 290–294, 2017. [67] D. A.Granville andG. O.Sawakuchi, “Comparison of linear energy transfer scoring techniques in Monte Carlo simulations of proton beams,” IOP Publishing, 2015. [68] M. J.Berger, J. S.Coursey, M. A.Zucker, andJ.Chang, “Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions,” 1998. [69] M.Wedenberg andI.Toma-Dasu, “Disregarding RBE variation in treatment plan comparison may lead to bias in favor of proton plans,” Med. Phys., vol. 41, no. 9, 2014. [70] M.Moteabbed et al., “Impact of interfractional motion on hypofractionated pencil beam scanning proton therapy and VMAT delivery for prostate cancer,” Med. Phys., vol. 45, no. 9, pp. 4011–4019, 2018. [71] S. C.Kamran, J. O.Light, andJ. A.Efstathiou, “Proton versus photon-based radiation therapy for prostate cancer: emerging evidence and considerations in the era of value-based cancer care,” Prostate Cancer Prostatic Dis., 2019. [72] S.Kurtz, K.Ong, E.Lau, F.Mowat, andM.Halpern, “Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030,” J. Bone Jt. Surg. - Ser. A, vol. 89, no. 4, pp. 780–785, 2007. [73] T. S. A.Underwood et al., “Hydrogel rectum-prostate spacers mitigate the uncertainties in proton relative biological effectiveness associated with anterior-oblique beams,” Acta Oncol. (Madr)., vol. 56, no. 4, pp. 575–581, 2017. [74] M.Essers andB. J.Mijnheer, “In vivo dosimetry during external photon beam radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 43, no. 2, pp. 245–259, 1999. [75] H. M.Lu, “A potential method for in vivo range verification in proton therapy treatment,” Phys. Med. Biol., vol. 53, no. 5, pp. 1413–1424, 2008. [76] B.Gottschalk, S.Tang, E. H.Bentefour, E. W.Cascio, D.Prieels, andH. M.Lu, “Water equivalent path length measurement in proton radiotherapy using time resolved diode dosimetry,” Med. Phys., vol. 38, no. 4, pp. 2282–2288, 2011. [77] E. H.Bentefour, T.Shikui, D.Prieels, andH. M.Lu, “Effect of tissue heterogeneity on an in vivo range verification technique for proton therapy,” Phys. Med. Biol., vol. 57, no. 17, pp. 5473–5484, 2012. [78] E. H.Bentefour et al., “Validation of an in-vivo proton beam range check method in an anthropomorphic pelvic phantom using dose measurements,” Med. Phys., vol. 42, no. 4, pp. 1936–1947, 2015. [79] M.Hoesl et al., “Clinical commissioning of an in vivo range verification system for prostate cancer treatment with anterior and anterior oblique proton beams,” Phys. Med. Biol., vol. 61, no. 8, pp. 3049–3062, 2016. [80] S.Tang et al., “Improvement of prostate treatment by anterior proton fields,” Int. J. Radiat. Oncol. Biol. Phys., vol. 83, no. 1, pp. 408–418, 2012. [81] W. C.Hsi, M.Fagundes, O.Zeidan, E.Hug, andN.Schreuder, “Image-guided method for TLD-based in vivo rectal dose verification with endorectal balloon in proton therapy for prostate cancer,” Med. Phys., vol. 40, no. 5, pp. 1–6, 2013. [82] J. M.Ixquiac-Cabrera, M. E.Brandan, A.Martínez-Dávalos, M.Rodríguez-Villafuerte, C.Ruiz-Trejo, andI.Gamboa-Debuen, “Effect of spectral shape in the relative efficiency of LiF: Mg,Ti exposed to 20 keV effective energy X-rays,” Radiat. Meas., vol. 46, no. 4, pp. 389–395, 2011. [83] M.Rodríguez-Villafuerte et al., “Study of the TL response of LiF:Mg,Ti to 3 and 7.5 MeV helium ions: Measurements and interpretation in terms of the track interaction model,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 160, no. 3, pp. 377–386, 2000. [84] M.Hajek et al., “LET dependence of thermoluminescent efficiency and peak height ratio of CaF2:Tm,” Radiat. Meas., vol. 43, no. 2–6, pp. 1135–1139, 2008. [85] I. D.Munoz, O.Avila, I.Gamboa-Debuen, andM. E.Brandan, “Evolution of the CaF2:Tm (TLD-300) glow curve as an indicator of beam quality for low-energy photon beams,” Phys. Med. Biol., vol. 60, no. 6, pp. 2135–2144, 2015. [86] D.Baltas, L.Sakelliou, andN.Zamboglou, “The physics of modern brachytherapy for oncology,” Phys. Mod. Brachytherapy Oncol., pp. 1–648, 2006. [87] R.Zhang, P. J.Taddei, M. M.Fitzek, andW. D.Newhauser, “Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions,” Phys. Med. Biol., vol. 55, no. 9, pp. 2481–2493, 2010. [88] M. M.Mukaka, “Statistics corner: A guide to appropriate use of correlation coefficient in medical research,” Malawi Med. J., vol. 24, no. 3, pp. 69–71, 2012. [89] M. F.Moyers andD. W.Miller, “Range, Range Modulation, and Field Radius Requirements for Proton Therapy of Prostate Cancer,” Technol. Cancer Res. Treat., vol. 2, no. 5, pp. 445–447, 2003. [90] M.Moteabbed et al., “Proton therapy of prostate cancer by anterior-oblique beams: Implications of setup and anatomy variations,” Phys. Med. Biol., vol. 62, no. 5, pp. 1644–1660, 2017. [91] K. E. S.Poole et al., “Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture,” PLoS One, vol. 7, no. 6, pp. 1–7, 2012. [92] J. M.Lamvoheea, R.Mootanah, P.Inglea, K.Cheah, andJ. K.Dowell, “Stresses in cement mantles of hip replacements: Effect of femoral implant sizes, body mass index and bone quality,” Comput. Methods Biomech. Biomed. Engin., vol. 12, no. 5, pp. 501–510, 2009. [93] 黃柏翰, “CR39固態核徑跡偵檢器應用於質子治療之平均直線能量轉移能譜評估,” 2017. [94] E.Rørvik, S.Thornqvist, C. H.Stokkevag, T. J.Dahle, L. F.Fjæra, andK. S.Ytre-Hauge, “A phenomenological biological dose model for proton therapy based on linear energy transfer spectra,” Med. Phys., vol. 44, no. 6, pp. 2586–2594, 2017. [95] J. J.Cuaron et al., “Anterior-oriented proton beams for prostate cancer: A multi-institutional experience,” Acta Oncol. (Madr)., vol. 54, no. 6, pp. 868–874, 2015.
|