帳號:guest(18.190.153.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡佳玉
作者(外文):Chien, Chia-Yu
論文名稱(中文):直線能量轉移量測系統之臨床應用:質子治療攝護腺射束於擬人假體內之量測
論文名稱(外文):Clinical Application of Linear Energy Transfer Measurement System: Measurements of Prostate Proton Therapy Beams in Anthropomorphic Phantom
指導教授(中文):蔡惠予
指導教授(外文):Tsai, Hui-Yu
口試委員(中文):張似瑮
徐椿壽
陳一瑋
口試委員(外文):Chang, Szu-Li
Chui, Chen-Shou
Chen, Yi-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:107013504
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:質子治療攝護腺癌直線能量轉移變量相對生物效應
外文關鍵詞:prostate proton therapylinear energy transfervariable relative biological effectiveness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:133
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  現今質子治療計畫中以定量(constant)相對生物效應(relative biological effectiveness, RBE)來規劃治療計畫,然而RBE是會隨著分次劑量、直線能量轉移(linear energy transfer, LET)、細胞種類與生物終點而變動的,尤其在質子治療領域中,LET與RBE呈現正相關,會於質子射程遠端有升高的趨勢,此現象顯示考量變量(variable) RBE的必要性,透過將變量RBE納入治療計畫才可評估更準確之治療成效。本研究將熱發光劑量計(thermoluminescent dosimeter, TLD)量測LET之系統應用於質子治療攝護腺癌,以臨床射束條件對擬人假體中之TLD進行照射,分析假體內量測之劑量與LET,並透過RBE模型來將LET轉換為變量RBE,使TLD可作為體內(in-vivo)量測變量RBE之工具,未來亦可作為體內驗證RBE之工具來使用。
  為了使用TLD量測LET,本研究首先比較高溫比值法與峰比值法所建立之LET量測系統對於臨床之適用性,藉由觀察TLD使用兩種方法下之量測結果與TOPAS蒙地卡羅模擬結果之相近程度來選擇一種較適合臨床使用的系統進行後續評估。對於臨床應用的部分,因攝護腺對輻射較敏感(α/β較小),RBE較大,對於觀察RBE變化相對容易,因此選用質子治療攝護腺癌作為臨床應用案例。針對常規治療攝護腺方式(bilateral fields, BL)與新興照射方式(anterior oblique fields, AO)進行文獻回顧後,發現於靶深度、靶體積與組織不均性上兩者具有差異,因此對這三個因素進行LET依存性的評估。最後,以BL與AO射束照射擬人假體中之TLD,取得假體內之劑量與LET,透過RBE模型轉換為變量RBE與生物劑量,對兩種照射方式之結果進行分析。
  採用變量RBE來優化質子治療計畫是未來趨勢,如何進行體內驗證為一重要議題,本研究透過將建立之LET量測系統應用於臨床質子治療攝護腺癌中,成功證明TLD量測LET系統適用於臨床,且TLD有能力作為劑量與變量RBE體內驗證之工具來使用。
  Currently, the treatment planning systems (TPSs) in proton radiation therapy are based on the assumption of constant relative biological effectiveness (RBE) of 1.1. However, there is experimental evidence that proton RBE varies with the linear energy transfer (LET), dose per fraction, tissue type and biological endpoint. Due to the positive correlation between LET and RBE at the distal proton range, it is necessary to take the variable RBE into account for TPSs. The purpose of this study is to apply the LET measurement system with thermoluminescent dosimeters (TLD) to clinical prostate proton therapy, analyzing the dose and LET in anthropomorphic phantom by TLD and converting to variable RBE. In this way, TLD can be a useful tool for in-vivo verification of variable RBE.
  In order to measure LET by TLD, the clinical applicability between high temperature method based and peak ratio method based LET measurement systems are accessed in this study. For selecting a proper system for LET analysis, we compare the TLD measurements and the TOPAS Monte Carlo simulation results in these two methods. For clinical application, due to the higher radiosensitivity (lower α/β ratio) of prostate, it is easier to observe the elevations of RBE in prostate cancer proton therapy. Therefore, we decide to compare the LET between standard bilateral (BL) fields and anterior oblique (AO) fields in treating prostate cancer. Because the target depth, target volume and tissue heterogeneity in these two fields are different, it is essential to evaluate the LET dependence on these factors. Lastly, TLDs are irradiated by BL and AO fields in an anthropomorphic phantom. In order to assess variable RBE weighted biological dose of BL and AO fields, the dose and LET measured by TLDs are converted to variable RBE through the RBE model.
  The use of variable RBE to optimize proton therapy plans is a future trend. Therefore, how to measure the in-vivo variable RBE is a vital issue. The results of this study prove that TLD can be used as a tool for in-vivo dose and variable RBE verification.
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與步驟 2
1.3 研究範圍與限制 3
1.4 名詞解釋 4
第二章 介紹與文獻回顧 7
2.1 直線能量轉移之量測 7
2.1.1 阻擋本領與直線能量轉移 7
2.1.2 直線能量轉移偵檢器 8
2.1.3 熱發光劑量計原理 9
2.1.4 高溫比值法與峰比值法 12
2.1.5 直線能量轉移量測系統 14
2.2 相對生物效應 17
2.2.1 線性二次模型 17
2.2.2 相對生物效應模型 18
2.3 蒙地卡羅模擬 19
2.3.1 TOPAS簡介 20
2.3.2 模擬質子治療機 21
2.3.3 紀錄直線能量轉移之方法 22
2.4 質子治療攝護腺癌 23
2.4.1 質子治療技術簡介 23
2.4.2 質子治療攝護腺癌 24
2.4.3 質子治療之體內驗證 25
第三章 研究設計與方法 29
3.1 直線能量轉移量測系統 30
3.1.1 高溫比值法與峰比值法 30
3.1.2 直線能量轉移量測系統之優化 32
3.1.3 直線能量轉移量測系統之臨床適用性 32
3.2 直線能量轉移依存性 35
3.2.1 靶體積與靶深度 36
3.2.2 組織不均性 36
3.3 質子治療攝護腺癌之擬人假體量測 38
3.3.1 劑量與直線能量轉移量測 38
3.3.2 生物劑量評估 40
第四章 結果與討論 41
4.1 直線能量轉移量測系統之臨床適用性 41
4.1.1 高溫比值方法 41
4.1.2 峰比值方法 42
4.1.3 直線能量轉移量測系統之臨床適用性評比 45
4.2 直線能量轉移依存性 47
4.3 質子治療攝護腺癌之擬人假體量測 49
4.4 變量RBE加權之生物劑量評估 51
第五章 結論與未來展望 55
參考資料 56
[1] L. E.Gerweck andS.V.Kozin, “Relative biological effectiveness of proton beams in clinical therapy,” Radiother. Oncol., vol. 50, no. 2, pp. 135–142, 1999.
[2] R. A.Britten et al., “Variations in the RBE for Cell Killing Along the Depth-Dose Profile of a Modulated Proton Therapy Beam,” Radiat. Res., vol. 179, no. 1, pp. 21–28, 2013.
[3] H.Paganetti et al., “Relative biological effectiveness (RBE) values for proton beam therapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 53, no. 2, pp. 407–421, 2002.
[4] H.Paganetti, “Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer,” Phys. Med. Biol., vol. 59, no. 22, pp. R419–R472, 2014.
[5] L. F.Fjæra et al., “Linear energy transfer distributions in the brainstem depending on tumour location in intensity-modulated proton therapy of paediatric cancer,” Acta Oncol. (Madr)., vol. 56, no. 6, pp. 763–768, 2017.
[6] C. R.Peeler et al., “Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma,” Radiother. Oncol., vol. 121, no. 3, pp. 395–401, 2016.
[7] J.Ödén, K.Eriksson, andI.Toma-Dasu, “Inclusion of a variable RBE into proton and photon plan comparison for various fractionation schedules in prostate radiation therapy,” Med. Phys., vol. 44, no. 3, pp. 810–822, 2017.
[8] T.Underwood et al., “Can We Advance Proton Therapy for Prostate? Considering Alternative Beam Angles and Relative Biological Effectiveness Variations When Comparing Against Intensity Modulated Radiation Therapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 95, no. 1, pp. 454–464, 2016.
[9] A. C.Knopf andA.Lomax, “In vivo proton range verification: A review,” Phys. Med. Biol., vol. 58, no. 15, pp. 131–160, 2013.
[10] H.Paganetti, “Proton Relative Biological Effectiveness – Uncertainties and Opportunities,” Int. J. Part. Ther., vol. 5, no. 1, pp. 2–14, 2018.
[11] 宋其勳, “以熱發光劑量計建立直線能量轉移量測系統,” 2018.
[12] H. Y.Tsai, C. H.Sung, H. H.Chen, M. W.Lin, H. C.Huang, andS. L.Chang, “Clinical application of ionization density dependence of the glow curve for measuring linear energy transfer in therapeutic proton beams,” Radiat. Meas., vol. 127, no. 101, p. 106146, 2019.
[13] D. A.Granville, N.Sahoo, andG. O.Sawakuchi, “Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams,” Phys. Med. Biol., vol. 61, no. 4, pp. 1765–1779, 2016.
[14] V.Conte, P.Colautti, S.Chiriotti, D.Moros, M.Ciocca, andA.Mairani, “Mini-TEPC Microdosimetric Study of Carbon Ion Therapeutic Beams at CNAO,” EPJ Web Conf., vol. 153, pp. 3–6, 2017.
[15] K.Takada et al., “Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy,” J. Radiat. Res., vol. 59, no. 1, pp. 91–99, 2018.
[16] V.Conte et al., “Microdosimetry at the CATANA 62 MeV proton beam with a sealed miniaturized TEPC,” Phys. Medica, vol. 64, no. April, pp. 114–122, 2019.
[17] C. E.Johnson, J. M.DeWitt, E. R.Benton, N.Yasuda, andE.V.Benton, “LET spectrum measurements in CR-39 PNTD with AFM,” AIP Conf. Proc., vol. 1336, pp. 637–642, 2011.
[18] G. S.Sahoo, S. P.Tripathy, A. G.Molokanov, V. E.Aleynikov, S. D.Sharma, andT.Bandyopadhyay, “Measurement of LET (linear energy transfer) spectra using CR-39 at different depths of water irradiated by 171 MeV protons: A comparison with Monte Carlo simulation,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 818, pp. 14–19, 2016.
[19] C.Reft, M.Pankuch, andH.Ramirez, “Thermoluminescent Detectors to Measure LET in Proton Beams,” Austin J. Med. Oncol., vol. 4, no. 1, 2017.
[20] L. T.Tran et al., “The relative biological effectiveness for carbon, nitrogen, and oxygen ion beams using passive and scanning techniques evaluated with fully 3D silicon microdosimeters,” Med. Phys., vol. 45, no. 5, pp. 2299–2308, 2018.
[21] G. S.Sahoo et al., “Measurement of neutron dose from p+181Ta reaction at different proton energies via LET spectrometry,” J. Radioanal. Nucl. Chem., no. 0123456789, 2019.
[22] M.Ghergherehchi et al., “Dosimetry and microdosimetry of 10 e 220 MeV proton beams with CR-39 and their veri fi cations by calculation of reaction cross sections using ALICE , TALYS and GEANT4 codes,” vol. 47, pp. 410–416, 2012.
[23] G. M.Akselrod, M. S.Akselrod, E. R.Benton, andN.Yasuda, “A novel Al2O3 fluorescent nuclear track detector for heavy charged particles and neutrons,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 247, no. 2, pp. 295–306, 2006.
[24] P.Saadatkia, C.Varney, andF.Selim, “Trap Level Measurements in Wide Band Gap Materials by Thermoluminescence,” Lumin. - An Outlook Phenom. their Appl., 2016.
[25] G.Massillon-JL, I.Gamboa-deBuen, andM. E.Brandan, “TL response of LiF : Mg,Ti exposed to intermediate energy 1 H, 3 He, 12 C, 16 O and 20 Ne ions,” J. Phys. D. Appl. Phys., vol. 40, no. 8, pp. 2584–2593, 2007.
[26] J. T.Randall andM. H. F.Wilkins, “Phosphorescence and electron traps - I. The study of trap distributions,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 184, no. 999, pp. 365–389, 1945.
[27] G. F. J.Garlick andA. F.Gibson, “The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors,” Proc. Phys. Soc., vol. 60, no. 6, pp. 574–590, 1948.
[28] C. E.May andJ. A.Partridge, “Thermoluminescent kinetics of alpha-irradiated alkali halides,” J. Chem. Phys., vol. 40, no. 5, pp. 1401–1409, 1964.
[29] A. J. J.Bos, “Theory of thermoluminescence,” Radiat. Meas., vol. 41, no. SUPPL. 1, 2006.
[30] S.Som, S. K.Sharma, andS. P.Lochab, “Trapping Parameters of Thermally Stimulated Luminescence Glow Curves in Y2O3: Tb3+ Nanophosphor,” vol. 143, 2013, pp. 191–202.
[31] N.Vana, W.Schöner, M.Fugger, andY.Akatov, “Absorbed dose measurement and let determination with TLDs in space,” Radiation Protection Dosimetry, vol. 66, no. 1–4. pp. 145–152, 1996.
[32] Y. S.Horowitz, D.Satinger, E.Fuks, L.Oster, andL.Podpalov, “On the use of LiF:Mg,Ti thermoluminescence dosemeters in space - A critical review,” Radiat. Prot. Dosimetry, vol. 106, no. 1, pp. 7–24, 2003.
[33] Y. S.Horowitz, A.Horowitz, L.Oster, S.Marino, H.Datz, andM.Margaliot, “Investigation of the ionisation density dependence of the glow curve characteristics of LIF:MG,TI (TLD-100),” Radiat. Prot. Dosimetry, vol. 131, no. 4, pp. 406–413, 2008.
[34] M.Puchalska andP.Bilski, “An improved method of estimating ionisation density using TLDs,” Radiat. Meas., vol. 43, no. 2–6, pp. 679–682, 2008.
[35] K. S.Chung, H. S.Choe, J. I.Lee, J. L.Kim, andS. Y.Chang, “A computer program for the deconvolution of thermoluminescence glow curves,” Radiat. Prot. Dosimetry, vol. 115, no. 1–4, pp. 345–349, 2005.
[36] M.Puchalska andP.Bilski, “GlowFit-a new tool for thermoluminescence glow-curve deconvolution,” Radiat. Meas., vol. 41, no. 6, pp. 659–664, 2006.
[37] J.Peng, Z. B.Dong, andF. Q.Han, “tgcd: An R package for analyzing thermoluminescence glow curves,” SoftwareX, vol. 5, pp. 112–120, 2015.
[38] A.Parisi, O.VanHoey, P.Mégret, andF.Vanhavere, “Deconvolution study on the glow curve structure of LiF:Mg,Ti and LiF:Mg,Cu,P thermoluminescent detectors exposed to 1H, 4He and 12C ion beams,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 407, pp. 222–229, 2017.
[39] Hi.Yasuda, “Glow-Peak Stability in 6LiF:Mg,Ti (TLD-600) Exposed to a Fe-ion beam,” J. Radiat. Res., vol. 42, no. 1, pp. 69–78, 2001.
[40] B.Chandra, A. R.Lakshmanan, R. C.Bhatt, andK. G.Vohra, “Annealing and Re-Usability Characteristics of LiF (Mg,Cu,P) TLD Phosphor,” Radiat. Prot. Dosimetry, 1982.
[41] J. B.Lasky andP. R.Moran, “Thermoluminescent response of LiF (TLD-100) to 5-30 keV electrons and the effect of annealing in various atmospheres,” Phys. Med. Biol., vol. 22, no. 5, p. 004, 1977.
[42] A. J. J.Bos, R. N. M.Vijverberg, T. M.Piters, andS. W. S.McKeever, “Effects of Cooling and Heating Rate on Trapping Parameters in LiF: Mg, Ti Crystals,” J. Phys. D. Appl. Phys., vol. 25, no. 8, pp. 1249–1257, 1992.
[43] E.Sonder, A. B.Ahmed, andE. A.Watson, “An assessment of using glow curve fitting procedures for obtaining information on exposure history,” Radiat. Prot. Dosimetry, vol. 81, no. 4, pp. 265–270, 1999.
[44] P.Bilski, W.Gieszczyk, B.Obryk, andK.Hodyr, “Comparison of commercial thermoluminescent readers regarding high-dose high-temperature measurements,” Radiat. Meas., vol. 65, pp. 8–13, 2014.
[45] T.Berger andM.Hajek, “On the linearity of the high-temperature emission from 7LiF:Mg,Ti (TLD-700),” Radiat. Meas., vol. 43, no. 9–10, pp. 1467–1473, 2008.
[46] H.Datz, Y. S.Horowitz, L.Oster, andM.Margaliot, “Influence of background subtraction protocol on the high temperature thermoluminescence in LiF:Mg,Ti (TLD-100),” Radiat. Meas., vol. 46, no. 12, pp. 1440–1443, 2011.
[47] H.Datz, Y. S.Horowitz, L.Oster, andM.Margaliot, “Characteristics of the high temperature thermoluminescence in LiF:Mg,Ti (TLD-100): The effects of batch history,” Radiat. Meas., vol. 45, no. 3–6, pp. 710–712, 2010.
[48] N.Vana andP.Skrobanek, “Computer Supported Deconvolution of High Temperature Glow Peaks in LiF Thermoluminescence Dosemeters,” Radiat. Prot. Dosimetry, vol. 51, no. 3, pp. 191–200, 1994.
[49] A. J. J.Bos, “An Intercomparison of Glow Curve Analysis Computer Programs: II. Measured Glow Curves,” Radiat. Prot. Dosimetry, 1994.
[50] J.Ödén andP. M.DeLuca, “The use of a constant RBE=1.1 for proton radiotherapy is no longer appropriate.,” Med. Phys., vol. 12, no. 10, pp. 3218–3221, 2018.
[51] E.Rørvik et al., “Exploration and application of phenomenological RBE models for proton therapy,” Phys. Med. Biol., vol. 63, no. 18, p. 185013, 2018.
[52] D. J.Brenner andE. J.Hall, “Fractionation and protraction for radiotherapy of prostate carcinoma,” Int. J. Radiat. Oncol. Biol. Phys., vol. 43, no. 5, pp. 1095–1101, 1999.
[53] N. H. A.Terry andJ.Denekamp, “RBE values and repair characteristics for colo-rectal injury after caesium 137 gamma-ray and neutron irradiation. II. Fractionation up to ten doses,” Br. J. Radiol., vol. 57, no. 679, pp. 617–629, 1984.
[54] A. L.McNamara, J.Schuemann, andH.Paganetti, “A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data,” Phys. Med. Biol., vol. 60, no. 21, pp. 8399–8416, 2015.
[55] M.Wedenberg, B. K.Lind, andB.Hårdemark, “A model for the relative biological effectiveness of protons: The tissue specific parameter α/β of photons is a predictor for the sensitivity to LET changes,” Acta Oncol. (Madr)., vol. 52, no. 3, pp. 580–588, 2013.
[56] A.Carabe, S.España, C.Grassberger, andH.Paganetti, “Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver,” Phys. Med. Biol., vol. 58, no. 7, pp. 2103–2117, 2013.
[57] B.Jones, “Towards achieving the full clinical potential of proton therapy by inclusion of LET and RBE models,” Cancers (Basel)., vol. 7, no. 1, pp. 460–480, 2015.
[58] J. J.Wilkens andU.Oelfke, “A phenomenological model for the relative biological effectiveness in therapeutic proton beams,” Phys. Med. Biol., vol. 49, no. 13, pp. 2811–2825, 2004.
[59] F.Tommasino et al., “A new facility for proton radiobiology at the Trento proton therapy centre: Design and implementation,” Phys. Medica, vol. 58, no. February, pp. 99–106, 2019.
[60] A.Parisi et al., “A novel methodology to assess linear energy transfer and relative biological effectiveness in proton therapy using pairs of differently doped thermoluminescent detectors,” Phys. Med. Biol., vol. 64, no. 8, p. 085005, 2019.
[61] G. O.Sawakuchi et al., “An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle,” Med. Phys., vol. 37, no. 9, pp. 4960–4970, 2010.
[62] F.Alsanea, F.Therriault-Proulx, G.Sawakuchi, andS.Beddar, “A real-time method to simultaneously measure linear energy transfer and dose for proton therapy using organic scintillators,” Med. Phys., vol. 45, no. 4, pp. 1782–1789, 2018.
[63] S.Hirayama et al., “An analytical dose-averaged LET calculation algorithm considering the off-axis LET enhancement by secondary protons for spot-scanning proton therapy,” Med. Phys., vol. 45, no. 7, pp. 3404–3416, 2018.
[64] C.-C.Lee, S.-Y.Cai, T.-C.Chao, M.-J.Lin, andC.-J.Tung, “Depth dose characteristics of proton beams within therapeutic energy range using the particle therapy simulation framework (PTSim) Monte Carlo technique,” Biomed. J., vol. 38, no. 5, p. 408, 2015.
[65] J.Perl, J.Shin, J.Schümann, B.Faddegon, andH.Paganetti, “TOPAS: An innovative proton Monte Carlo platform for research and clinical applications,” Med. Phys., vol. 39, no. 11, pp. 6818–6837, 2012.
[66] Y. C.Lin, C. C.Lee, T. C.Chao, andH. Y.Tsai, “Ambient neutron dose equivalent during proton therapy using wobbling scanning system: Measurements and calculations,” Radiat. Phys. Chem., vol. 140, pp. 290–294, 2017.
[67] D. A.Granville andG. O.Sawakuchi, “Comparison of linear energy transfer scoring techniques in Monte Carlo simulations of proton beams,” IOP Publishing, 2015.
[68] M. J.Berger, J. S.Coursey, M. A.Zucker, andJ.Chang, “Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions,” 1998.
[69] M.Wedenberg andI.Toma-Dasu, “Disregarding RBE variation in treatment plan comparison may lead to bias in favor of proton plans,” Med. Phys., vol. 41, no. 9, 2014.
[70] M.Moteabbed et al., “Impact of interfractional motion on hypofractionated pencil beam scanning proton therapy and VMAT delivery for prostate cancer,” Med. Phys., vol. 45, no. 9, pp. 4011–4019, 2018.
[71] S. C.Kamran, J. O.Light, andJ. A.Efstathiou, “Proton versus photon-based radiation therapy for prostate cancer: emerging evidence and considerations in the era of value-based cancer care,” Prostate Cancer Prostatic Dis., 2019.
[72] S.Kurtz, K.Ong, E.Lau, F.Mowat, andM.Halpern, “Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030,” J. Bone Jt. Surg. - Ser. A, vol. 89, no. 4, pp. 780–785, 2007.
[73] T. S. A.Underwood et al., “Hydrogel rectum-prostate spacers mitigate the uncertainties in proton relative biological effectiveness associated with anterior-oblique beams,” Acta Oncol. (Madr)., vol. 56, no. 4, pp. 575–581, 2017.
[74] M.Essers andB. J.Mijnheer, “In vivo dosimetry during external photon beam radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 43, no. 2, pp. 245–259, 1999.
[75] H. M.Lu, “A potential method for in vivo range verification in proton therapy treatment,” Phys. Med. Biol., vol. 53, no. 5, pp. 1413–1424, 2008.
[76] B.Gottschalk, S.Tang, E. H.Bentefour, E. W.Cascio, D.Prieels, andH. M.Lu, “Water equivalent path length measurement in proton radiotherapy using time resolved diode dosimetry,” Med. Phys., vol. 38, no. 4, pp. 2282–2288, 2011.
[77] E. H.Bentefour, T.Shikui, D.Prieels, andH. M.Lu, “Effect of tissue heterogeneity on an in vivo range verification technique for proton therapy,” Phys. Med. Biol., vol. 57, no. 17, pp. 5473–5484, 2012.
[78] E. H.Bentefour et al., “Validation of an in-vivo proton beam range check method in an anthropomorphic pelvic phantom using dose measurements,” Med. Phys., vol. 42, no. 4, pp. 1936–1947, 2015.
[79] M.Hoesl et al., “Clinical commissioning of an in vivo range verification system for prostate cancer treatment with anterior and anterior oblique proton beams,” Phys. Med. Biol., vol. 61, no. 8, pp. 3049–3062, 2016.
[80] S.Tang et al., “Improvement of prostate treatment by anterior proton fields,” Int. J. Radiat. Oncol. Biol. Phys., vol. 83, no. 1, pp. 408–418, 2012.
[81] W. C.Hsi, M.Fagundes, O.Zeidan, E.Hug, andN.Schreuder, “Image-guided method for TLD-based in vivo rectal dose verification with endorectal balloon in proton therapy for prostate cancer,” Med. Phys., vol. 40, no. 5, pp. 1–6, 2013.
[82] J. M.Ixquiac-Cabrera, M. E.Brandan, A.Martínez-Dávalos, M.Rodríguez-Villafuerte, C.Ruiz-Trejo, andI.Gamboa-Debuen, “Effect of spectral shape in the relative efficiency of LiF: Mg,Ti exposed to 20 keV effective energy X-rays,” Radiat. Meas., vol. 46, no. 4, pp. 389–395, 2011.
[83] M.Rodríguez-Villafuerte et al., “Study of the TL response of LiF:Mg,Ti to 3 and 7.5 MeV helium ions: Measurements and interpretation in terms of the track interaction model,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 160, no. 3, pp. 377–386, 2000.
[84] M.Hajek et al., “LET dependence of thermoluminescent efficiency and peak height ratio of CaF2:Tm,” Radiat. Meas., vol. 43, no. 2–6, pp. 1135–1139, 2008.
[85] I. D.Munoz, O.Avila, I.Gamboa-Debuen, andM. E.Brandan, “Evolution of the CaF2:Tm (TLD-300) glow curve as an indicator of beam quality for low-energy photon beams,” Phys. Med. Biol., vol. 60, no. 6, pp. 2135–2144, 2015.
[86] D.Baltas, L.Sakelliou, andN.Zamboglou, “The physics of modern brachytherapy for oncology,” Phys. Mod. Brachytherapy Oncol., pp. 1–648, 2006.
[87] R.Zhang, P. J.Taddei, M. M.Fitzek, andW. D.Newhauser, “Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions,” Phys. Med. Biol., vol. 55, no. 9, pp. 2481–2493, 2010.
[88] M. M.Mukaka, “Statistics corner: A guide to appropriate use of correlation coefficient in medical research,” Malawi Med. J., vol. 24, no. 3, pp. 69–71, 2012.
[89] M. F.Moyers andD. W.Miller, “Range, Range Modulation, and Field Radius Requirements for Proton Therapy of Prostate Cancer,” Technol. Cancer Res. Treat., vol. 2, no. 5, pp. 445–447, 2003.
[90] M.Moteabbed et al., “Proton therapy of prostate cancer by anterior-oblique beams: Implications of setup and anatomy variations,” Phys. Med. Biol., vol. 62, no. 5, pp. 1644–1660, 2017.
[91] K. E. S.Poole et al., “Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture,” PLoS One, vol. 7, no. 6, pp. 1–7, 2012.
[92] J. M.Lamvoheea, R.Mootanah, P.Inglea, K.Cheah, andJ. K.Dowell, “Stresses in cement mantles of hip replacements: Effect of femoral implant sizes, body mass index and bone quality,” Comput. Methods Biomech. Biomed. Engin., vol. 12, no. 5, pp. 501–510, 2009.
[93] 黃柏翰, “CR39固態核徑跡偵檢器應用於質子治療之平均直線能量轉移能譜評估,” 2017.
[94] E.Rørvik, S.Thornqvist, C. H.Stokkevag, T. J.Dahle, L. F.Fjæra, andK. S.Ytre-Hauge, “A phenomenological biological dose model for proton therapy based on linear energy transfer spectra,” Med. Phys., vol. 44, no. 6, pp. 2586–2594, 2017.
[95] J. J.Cuaron et al., “Anterior-oriented proton beams for prostate cancer: A multi-institutional experience,” Acta Oncol. (Madr)., vol. 54, no. 6, pp. 868–874, 2015.
(此全文20250722後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *