|
[1] Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. 2004. 6(5): p. 299-303. [2] Jien-Wei, Y.J.A.C.S.M., Recent progress in high entropy alloys. 2006. 31(6): p. 633-648. [3] 陳昭蓉, 以雙盤研磨法製作WC/(Co-Cr-Mo-Ni) 超硬合金之開發研究, in 材料科學工程學系. 2016, 國立清華大學. p. 228. [4] Sims, C.T., N.S. Stoloff, and W.C. Hagel, superalloys II. 1987: Wiley New York. [5] Pelloux, R. and N. Grant, SOLID SOLUTIONS AND SECOND PHASE STRENGTHENING OF NICKEL ALLOYS AT HIGH AND LOW TEMPERATURES. 1959, Massachusetts Inst. of Tech., Cambridge. Dept. of Metallurgy. [6] Fleischer, R.L.J.A.m., Substitutional solution hardening. 1963. 11(3): p. 203-209. [7] Morinaga, M., et al., New PHACOMP and its applications to alloy design. 1984: p. 523-532. [8] Machlin, E. and J.J.M.T.A. Shao, SIGMA-SAFE: A phase diagram approach to the sigma phase problem in ni base superalloys. 1978. 9(4): p. 561-568. [9] Jiang, C.J.A.m., Site preference of transition-metal elements in B2 NiAl: A comprehensive study. 2007. 55(14): p. 4799-4806. [10] 潘金生, 仝健民, and 田民波, 材料科学基础. 1998: 清华大学出版社有限公司. [11] Properties, A.H.J.V., Selection: Nonferrous Alloys and Special-Purpose Materials. 1990. 2: p. 78-79. [12] Tong, C.-J., et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. 2005. 36(4): p. 881-893. [13] Hsu, C.-Y., et al., Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition. 2004. 35(5): p. 1465-1469. [14] Huang, P.K., et al., Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating. 2004. 6(1‐2): p. 74-78. [15] Yeh, J.-W., et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. 2004. 35(8): p. 2533-2536. [16] Chen, Y., et al., Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. 2005. 47(9): p. 2257-2279. [17] Tong, C.-J., et al., Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. 2005. 36(5): p. 1263-1271. [18] Chen, M.-R., et al., Microstructure and properties of Al0. 5CoCrCuFeNiTix (x= 0–2.0) high-entropy alloys. 2006. 47(5): p. 1395-1401. [19] Chen, M.-R., et al., Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. 2006. 37(5): p. 1363-1369. [20] Wu, J.-M., et al., Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. 2006. 261(5-6): p. 513-519. [21] Hsu, U., et al., Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys. 2007. 460: p. 403-408. [22] Lai, C.-H., et al., Mechanical and tribological properties of multi-element (AlCrTaTiZr) N coatings. 2008. 202(15): p. 3732-3738. [23] Tsai, M.-H., et al., Thermally stable amorphous (Al Mo Nb Si Ta Ti V Zr) 50 N 50 nitride film as diffusion barrier in copper metallization. 2008. 92(5): p. 052109. [24] Chen, Y., et al., Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel. 2005. 47(11): p. 2679-2699. [25] Chen, Y., et al., Selected corrosion behaviors of a Cu0. 5NiAlCoCrFeSi bulk glassy alloy in 288 C high-purity water. 2006. 54(12): p. 1997-2001. [26] Chen, Y., et al., Corrosion properties of a novel bulk Cu0. 5NiAlCoCrFeSi glassy alloy in 288° C high-purity water. 2007. 61(13): p. 2692-2696. [27] Ranganathan, S.J.C.s., Alloyed pleasures: multimetallic cocktails. 2003. 85(5): p. 1404-1406. [28] Åstrand, M., et al., PVD-Al2O3-coated cemented carbide cutting tools. 2004. 188: p. 186-192. [29] Tung, C.-C., et al., On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. 2007. 61(1): p. 1-5. [30] Swalin, R.A. and J.J.J.o.T.E.S. Arents, Thermodynamics of solids. 1962. 109(12): p. 308C-308C. [31] Kelsall, R.W., I.W. Hamley, and M. Geoghegan, Nanoscale Science and Technology. 2005. [32] 林宥均,耐溫耐磨耐蝕高熵合金之開發, in 材料科學工程學系. 2019, 國立清華大學. p. 68-83
|