|
參考文獻 [1] Mathur, S., Fuchs, A., Bielicki, J., Van Den Anker, J., & Sharland, M. (2018). Antibiotic use for community-acquired pneumonia in neonates and children: WHO evidence review. Paediatrics and international child health, 38(sup1), S66–S75. [2] Aydoğdu, M., Ozyilmaz, E., Aksoy, H., Gürsel, G., & Ekim, N. (2010). Mortality prediction in community-acquired pneumonia requiring mechanical ventilation; values of pneumonia and intensive care unit severity scores. Tuberkuloz ve toraks, 58(1), 25–34. [3] World Health Organization. Pneumonia Vaccine Trial Investigators' Group & World Health Organization. (2001). Standardization of interpretation of chest radiographs for the diagnosis of pneumonia in children / World Health Organization Pneumonia Vaccine Trial Investigators' Group. [4] Ruuskanen, O; Lahti, E; Jennings, LC; Murdoch, DR. Viral pneumonia. (2011). Lancet, 377 (9773): 1264–75. [5] Hopstaken, R. M., Witbraad, T., van Engelshoven, J. M., & Dinant, G. J. (2004). Inter-observer variation in the interpretation of chest radiographs for pneumonia in community-acquired lower respiratory tract infections. Clinical radiology, 59(8), 743–752. [6] Mahdieh Poostchi, Kamolrat Silamut, Richard Maude, Stefan Jaeger, and George Thoma. (2018). Image analysis and machine learning for detecting malaria. Translational Research, 194, 36-55. [7] Harry Pratta, Frans Coenenb, Deborah M.Broadbentc, Simon P.Hardingac, Yalin Zhengac. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90, 200-205. [8] Y. Fujisawa, Y. Otomo, Y. Ogata, Y. Nakamura, R. Fujita, Y. Ishitsuka. (2019). Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses boardcertified dermatologists in skin tumour diagnosis. Janda and Soyer. Br J Dermatol, 180, 247–248. [9] Dinggang Shen, Guorong Wu, and Heung-Il Suk. (2017). Deep Learning in Medical Image Analysis. Biomed, 19, 21–48. [10]G. Litjens et al. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88. [11]Ravishankar, H., Sudhakar, P., Venkataramani, R., Thiruvenkadam, S., Annangi, P., Babu, N., & Vaidya, V. (2016). Understanding the Mechanisms of Deep Transfer Learning for Medical Images. LABELS/DLMIA@MICCAI. [12]Antin, B., Kravitz, J., & Martayan, E. (2017). Detecting Pneumonia in Chest X-Rays with Supervised Learning. [13]Paras Lakhani and Baskaran Sundaram. (2017). Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology, 284(2), 574-582. [14]Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R.M. (2017). ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3462-3471. [15]Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D.Y., Bagul, A., Langlotz, C.P., Shpanskaya, K.S., Lungren, M.P., & Ng, A.Y. (2017). CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. ArXiv, abs/1711.05225. [16]D. Varshni, K. Thakral, L. Agarwal, R. Nijhawan and A. Mittal. (2019). Pneumonia Detection Using CNN based Feature Extraction. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 1-7. [17]Glorot, X., Bordes, A. & Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, in PMLR 15:315-323 [18]Ramachandran, P., Zoph, B., & Le, Q.V. (2017). Swish: a Self-Gated Activation Function. arXiv: Neural and Evolutionary Computing. [19]Zhang, Z., & Sabuncu, M.R. (2018). Generalized Cross Entropy Loss for Training Deep Neural Networks with Nois Labels. NeurIPS. [20]Bottou, L., Curtis, F.E., & Nocedal, J. (2018). Optimization Methods for Large-Scale Machine Learning. SIAM Review, 60, 223-311. [21]Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. (2011). Optimization for Machine Learning. The MIT Press. [22]Kingma, D.P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980. [23]Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2014). OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. CoRR, abs/1312.6229. [24]Y. Lecun, L. Bottou, Y. Bengio and P. Haffner. (1998). Gradientbased learning applied to document recognition. in Proceedings of the IEEE, 86(11), 2278-2324 [25]Khan, A., Sohail, A., Zahoora, U., & Qureshi, A.S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 1 - 62. [26]Krizhevsky, Alex & Sutskever, Ilya & Hinton, Geoffrey. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems. 25. 10.1145/3065386. [27]Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR, abs/1409.1556. [28]Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1-9. [29]Lin, M., Chen, Q., & Yan, S. (2014). Network In Network. CoRR, abs/1312.4400. [30]Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. ArXiv, abs/1502.03167. [31]Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818-2826. [32]S. J. Pan and Q. Yang. (2010). A Survey on Transfer Learning. in IEEE Transactions on Knowledge and Data Engineering, 22,(10), 1345-1359. [33]Torrey, Lisa, and Jude Shavlik. (2010). Transfer learning. In Handbook of research on machine learning applications and trends: algorithms, methods, and techniques, 242-264. [34]Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? ArXiv, abs/1411.1792. [35]Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., & Lempitsky, V.S. (2016). DomainAdversarial Training of Neural Networks. ArXiv, abs/1505.07818. [36]Johnson, M., Schuster, M., Le, Q.V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F.B., Wattenberg, M., Corrado, G.S., Hughes, M., & Dean, J. (2017). Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. Transactions of the Association for Computational Linguistics, 5, 339-351. [37]Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C., Liang, H., Baxter, S. L., McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M. K., Pei, J., Ting, M., Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., Shi, A., … Zhang, K. (2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 172(5), 1122–1131.e9. [38]Shorten, C., & Khoshgoftaar, T.M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6, 1-48. [39]Tom Fawcett. (2006). An introduction to ROC analysis. Pattern Recogn. Lett. 27, 8, 861–874. [40]Bradley, Andrew P. (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. |