|
[1] R.E. Tanzi, A Brief History of Alzheimer's Disease Gene Discovery, Journal of Alzheimer's Disease, 33 (2013) S5-S13. [2] D.J. Selkoe, Alzheimer's Disease: Genes, Proteins, and Therapy, Physiological Reviews, 81 (2001) 741-766. [3] R.F. Allegri, D. Sarasola, C.M. Serrano, F.E. Taragano, R.L. Arizaga, J. Butman, L. Loñ, Neuropsychiatric symptoms as a predictor of caregiver burden in Alzheimer's disease, Neuropsychiatr Dis Treat, 2 (2006) 105-110. [4] N.C. Fox, E.K. Warrington, P.A. Freeborough, P. Hartikainen, A.M. Kennedy, J.M. Stevens, M.N. Rossor, Presymptomatic hippocampal atrophy in Alzheimer's disease: A longitudinal MRI study, Brain, 119 (1996) 2001-2007. [5] S.A.R.B. Rombouts, F. Barkhof, M.P. Witter, P. Scheltens, Unbiased whole-brain analysis of gray matter loss in Alzheimer's disease, Neuroscience Letters, 285 (2000) 231-233. [6] L.T. Westlye, K.B. Walhovd, A.M. Dale, T. Espeseth, I. Reinvang, N. Raz, I. Agartz, D.N. Greve, B. Fischl, A.M. Fjell, Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: A multi-sample MRI study, NeuroImage, 47 (2009) 1545-1557. [7] K. Juottonen, M.P. Laakso, K. Partanen, H. Soininen, Comparative MR Analysis of the Entorhinal Cortex and Hippocampus in Diagnosing Alzheimer Disease, American Journal of Neuroradiology, 20 (1999) 139. [8] A.S. Fleisher, S. Sun, C. Taylor, C.P. Ward, A.C. Gamst, R.C. Petersen, C.R. Jack, P.S. Aisen, L.J. Thal, Volumetric MRI vs clinical predictors of Alzheimer disease in mild cognitive impairment, Neurology, 70 (2008) 191. [9] A.S. Lundervold, A. Lundervold, An overview of deep learning in medical imaging focusing on MRI, Zeitschrift für Medizinische Physik, 29 (2019) 102-127. [10] M. Deepika Nair, M.S. Sinta, M. Vidya, A Study on Various Deep Learning Algorithms to Diagnose Alzheimer’s Disease, in: D. Pandian, X. Fernando, Z. Baig, F. Shi (Eds.) Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-CVB), (Springer International Publishing, Cham, 2019), pp. 1705-1710. [11] S.G. Mueller, M.W. Weiner, L.J. Thal, R.C. Petersen, C.R. Jack, W. Jagust, J.Q. Trojanowski, A.W. Toga, L. Beckett, Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI), Alzheimer's & Dementia, 1 (2005) 55-66. [12] G.a. Chetelat, J.-C. Baron, Early diagnosis of alzheimer’s disease: contribution of structural neuroimaging, NeuroImage, 18 (2003) 525-541. [13] R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, S. Lehéricy, M.-O. Habert, M. Chupin, H. Benali, O. Colliot, Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database, NeuroImage, 56 (2011) 766-781. [14] E. Gerardin, G. Chételat, M. Chupin, R. Cuingnet, B. Desgranges, H.-S. Kim, M. Niethammer, B. Dubois, S. Lehéricy, L. Garnero, F. Eustache, O. Colliot, Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging, NeuroImage, 47 (2009) 1476-1486. [15] H.-I. Suk, S.-W. Lee, D. Shen, Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis, NeuroImage, 101 (2014) 569-582. [16] O. Querbes, F. Aubry, J. Pariente, J.-A. Lotterie, J.-F. Démonet, V. Duret, M. Puel, I. Berry, J.-C. Fort, P. Celsis, I. The Alzheimer's Disease Neuroimaging, Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve, Brain, 132 (2009) 2036-2047. [17] L. Sørensen, C. Igel, A. Pai, I. Balas, C. Anker, M. Lillholm, M. Nielsen, I. Alzheimer’s Disease Neuroimaging, B. the Australian Imaging, a. Lifestyle flagship study of, Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry, Neuroimage Clin, 13 (2016) 470-482. [18] S. Basaia, F. Agosta, L. Wagner, E. Canu, G. Magnani, R. Santangelo, M. Filippi, Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks, NeuroImage: Clinical, 21 (2019) 101645. [19] J. Liu, M. Li, W. Lan, F. Wu, Y. Pan, J. Wang, Classification of Alzheimer's Disease Using Whole Brain Hierarchical Network, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15 (2018) 624-632. [20] S.J. Pan, Q. Yang, A Survey on Transfer Learning, IEEE Transactions on Knowledge and Data Engineering, 22 (2010) 1345-1359. [21] M. Hon, N.M. Khan, Towards Alzheimer's disease classification through transfer learning, in: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), (2017), pp. 1166-1169. [22] A. Ebrahimi-Ghahnavieh, S. Luo, R. Chiong, Transfer Learning for Alzheimer's Disease Detection on MRI Images, in: 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), (2019), pp. 133-138. [23] B. Khagi, C.G. Lee, G.-R. Kwon, Alzheimer’s disease Classification from Brain MRI based on transfer learning from CNN, in: 2018 11th Biomedical Engineering International Conference (BMEiCON), (IEEE, 2018), pp. 1-4. [24] K. Zhou, W. He, Y. Xu, G. Xiong, J. Cai, Feature selection and transfer learning for Alzheimer’s disease clinical diagnosis, Applied Sciences, 8 (2018) 1372. [25] G.E. Hinton, R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, 313 (2006) 504. [26] G.E. Hinton, S. Osindero, Y.-W. Teh, A Fast Learning Algorithm for Deep Belief Nets, Neural Computation, 18 (2006) 1527-1554. [27] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, 5 (1943) 115-133. [28] D.H. Hubel, T.N. Wiesel, Receptive fields of single neurones in the cat's striate cortex, J Physiol, 148 (1959) 574-591. [29] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86 (1998) 2278-2324. [30] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems, (2012), pp. 1097-1105. [31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, (2015), pp. 1-9. [32] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, (2014). [33] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, (2016), pp. 770-778. [34] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint arXiv:1207.0580, (2012). [35] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolutional neural networks for 3d shape recognition, in: Proceedings of the IEEE international conference on computer vision, (2015), pp. 945-953. [36] N. Amoroso, D. Diacono, A. Fanizzi, M. La Rocca, A. Monaco, A. Lombardi, C. Guaragnella, R. Bellotti, S. Tangaro, Deep learning reveals Alzheimer's disease onset in MCI subjects: Results from an international challenge, Journal of Neuroscience Methods, 302 (2018) 3-9. [37] C. Studholme, D.L.G. Hill, D.J. Hawkes, An overlap invariant entropy measure of 3D medical image alignment, Pattern Recognition, 32 (1999) 71-86. [38] M. Maqsood, F. Nazir, U. Khan, F. Aadil, H. Jamal, I. Mehmood, O.-y. Song, Transfer Learning Assisted Classification and Detection of Alzheimer’s Disease Stages Using 3D MRI Scans, Sensors, 19 (2019) 2645.
|