帳號:guest(18.191.210.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曹文馨
作者(外文):Tsao, Wen-Hsin
論文名稱(中文):配位基結構對水相中銅錯合物光反應性的影響
論文名稱(外文):Effect of the Ligand Structure on the Photoreactivity of Copper(II) Complexes in Aqueous Solution
指導教授(中文):吳劍侯
指導教授(外文):Wu, Chien-Hou
口試委員(中文):吳淑褓
侯文哲
鄧金培
口試委員(外文):Wu, Shu-Pao
Hou, Wen-Che
Deng, Jin-Pei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:107012510
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:146
中文關鍵詞:一價銅量子產率銅胺基酸錯合物銅有機酸錯合物光反應性光副產物
外文關鍵詞:Copper(I) quantum yieldsCu(II)/amino acid complexesCu(II)/organic acid complexesPhotoreactivityPhoto by-products
相關次數:
  • 推薦推薦:0
  • 點閱點閱:110
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在天然水體中二價銅離子與多種配位基所形成錯合物的光化學反應對於光反應性之研究相當重要,一價銅量子產率的測定是評估銅錯合物的光反應性之指標。藉由改變無氧水溶液中的 pH值、總配位基濃度與總二價銅濃度等實驗條件,於波長 313 nm的光照射下,銅錯合物經由配位基-金屬電荷轉移 (LMCT)反應引發一價銅的生成,研究配位基結構對於銅錯合物系統中光生成一價銅的效應。利用多元線性回歸分析測定個別二價銅錯合物種於 313 nm下的莫耳吸收係數與一價銅的量子產率,對於帶有醯胺基的銅胺基酸錯合物而言,其 CuL的一價銅量子產率 (ΦCu(I),CuL)如下:天門冬醯胺酸 (0.068 ± 0.013)、麩醯胺酸 (0.076 ± 0.020),CuL2的一價銅量子產率 (ΦCu(I),CuL2):天門冬醯胺酸 (0.047 ± 0.021)、麩醯胺酸 (0.067 ± 0.026),由於鍵結位置與電子親和力的影響不同,結果顯示配位基上的碳鏈長度增加對於光反應性影響並不顯著,然而 CuL的一價銅量子產率 (ΦCu(I),CuL)會大於CuL2的一價銅量子產率 (ΦCu(I),CuL2),此結果可透過銅與配位基之間的穩定效應說明。對於帶有 α-羥基的銅有機酸錯合物而言,其CuL的一價銅的量子產率 (ΦCu(I),CuL)遵循以下趨勢:酒石酸 (0.206 ± 0.030) > 蘋果酸 (0.160 ± 0.010) > 琥珀酸 (0.110 ± 0.018),而在 Cu(II)/Tar系統中,CuL2¬一價銅量子產率 (ΦCu(I),CuL2)也大於 CuL (ΦCu(I),CuL),這些結果皆表明 α-羥基會增加光反應性,其可歸因於 α-羥基會穩定錯合物的激發態,有利於進行 LMCT電子躍遷。此外,Cu(II)/Malic acid系統中的光產物乙醛及Cu(II)/2-AIB系統中的光產物丙酮的光副產物已被測定,Cu(I)與這些羰基產物的反應生成速率之比例約為 2.5 : 1,也比較在有氧環境下光副產物生成量皆較無氧的環境下高,在本研究中也提出其光化學反應機制模型假設。
The photoproduction of Cu(I) in deaerated solution is a useful indicator to evaluate the photodegradation of organic ligands when Cu(II) complexes with organic ligands exist in natural waters. Under irradiation at 313 nm, the effects of ligand structure to the Cu(I) photoformation of Cu(II) complex systems have been studied in the deaerated aqueous solutions over a widespread pH, total ligand concentration and total Cu(II) concentration. The Cu(I) photoformation is induced from Cu(II) complex through ligand-to-metal charge transfer (LMCT). Molar absorptivities and Cu(I) quantum yields of individual Cu(II) complex species at 313 nm have been determined by using the multivariate linear regression analysis. For the Cu(II)/amino acid complex with amide group, the Cu(I) quantum yields for CuL (ΦCu(I),CuL) : asparagine (Asn) (0.068 ± 0.013)、glutamine (Gln) (0.076 ± 0.020) and those for CuL2 (ΦCu(I),CuL2) : Asn (0.047 ± 0.021)、 Gln (0.067 ± 0.026). Due to the different effects of bonding position and affinity, the results show that the increase of the carbon chain length on the ligand has no significant effect on the photoreactivity. However, the result of ΦCu(I),CuL larger than ΦCu(I),CuL2 is explained from the stabilizing effect for Cu(II) and ligand. For the Cu(II)/organic acid complex with α-OH group, ΦCu(I),CuL follow the trend: tartaric acid (Tar) (0.206 ± 0.030) > malic acid (MA) (0.160 ± 0.010) > succinic acid (SA) (0.110 ± 0.018). In Cu(II)/Tar system, the Cu(I) quantum yields for CuL2 (ΦCu(I),CuL2) is also larger than CuL (ΦCu(I),CuL). These results indicate that α-OH group increase photoreactivity, which attributable to the stabilizing effect of α-OH group on the excited state of Cu(II) complex. In addition, the photo-by-product of acetaldehyde in the Cu(II)/malic acid system and acetone in the Cu(II)/2-AIB system have been determined. The reaction rate of Cu(I) and carbonyl photoproducts are approximately in the ratio of 2:1, and the amount of photo by-products generated in air-saturated solution is higher than that in deaerated solution. The photochemical reaction mechanism model assumption is proposed.
摘要.....I
Abstract.....II
謝誌.....IV
目錄.....V
圖目錄.....VIII
表目錄.....XV
第一章 緒論.....1
1.1簡介.....1
1.2 研究動機.....2
1.3 研究目的.....3
第二章 文獻回顧.....4
2.1 環境中銅的分布.....4
2.2 配位基.....5
2.2.1 胺基酸 (Amino acid).....5
2.2.2 有機酸 (Organic acid).....6
2.3 水相中銅錯合物的光化學反應.....7
2.3.1 Cu(II)/胺基酸錯合物 (Cu(II)/amino acid complexes).....7
2.3.2 Cu(II)/有機酸錯合物 (Cu(II)/ organic acid complexes).....10
2.4 一價銅的量測.....12
2.5 光反應副產物醛酮類的量測.....14
2.6 化學光度計 (Chemical actinometer).....15
第三章 實驗方法.....18
3.1 實驗理論與反應模型.....18
3.1.1 反應模型假設與條件.....18
3.1.2 水溶液中Cu(II) 錯合物的莫耳吸收係數.....19
3.1.3 水溶液中Cu(II) 錯合物的 Cu(I) 量子產率.....21
3.1.4 水溶液中 Cu(II) 錯合物的光產物醛銅量子產率.....23
3.2 銅錯合物系統中各個物種配位比例.....26
3.3 實驗藥品.....29
3.3.1 藥品.....29
3.3.2 藥品溶液配置.....30
3.4 實驗儀器.....35
3.4.1 單光照射系統 (Monochromatic irradiation system).....35
3.4.2 除氧系統 (Deaerated system).....36
3.4.3 紫外-可見光光譜儀 (UV-Vis spectrophotometer).....37
3.4.4 高效能液相層析儀 (High-Performance Liquid Chromatography) 38
3.4.5 pH meter.....39
3.5 實驗流程分析.....40
3.5.1 銅錯合物的莫耳吸收係數量測.....40
3.5.2 量測光反應中產生之一價銅.....40
3.5.3 光強度的量測.....44
3.5.4 銅胺基酸系統中醛類光產物的量測.....48
3.5.5 銅胺基酸系統中酮類光產物的量測.....53
3.6 實驗架構.....56
第四章 結果與討論.....58
4.1 莫耳吸收係數.....58
4.2 Cu(II)/amino acid系統中 Cu(I)光反應.....65
4.2.1 Cu(II)/Asparagine錯合物反應動力學及 Cu(I)量子產率.....65
4.2.2 Cu(II)/Glutamine錯合物反應動力學及 Cu(I)量子產率.....70
4.2.3 Cu(II)/Lysine錯合物反應動力學及 Cu(I)量子產率.....74
4.2.4 Cu(II)/Arginine錯合物反應動力學及 Cu(I)量子產率.....78
4.3 Cu(II)/organic acid系統中 Cu(I)光反應.....82
4.3.1 Cu(II)/Tartaric acid錯合物反應動力學及 Cu(I)量子產率.....82
4.3.2 Cu(II)/2-AIB錯合物反應動力學及 Cu(I)量子產率.....86
4.4 Cu(II)/amino acid系統中醛、酮光副產物.....88
4.5 Cu(II)/organic acid 系統中醛、酮光副產物.....93
4.6 配位基結構的光反應性比較.....107
4.6.1 胺基酸系統比較.....107
4.6.2 有機酸系統比較.....108
4.6.3 有氧/無氧系統光副產物比較.....110
第五章 結論.....118
第六章 未來展望.....119
參考資料.....120
附錄一 Cu(II)錯合物之莫耳吸收係數原始數據.....128
附錄二 Cu(II)錯合物光反應產生之 Cu(I)原始數據.....135
附錄三 Cu(II)錯合物光反應產生之醛、酮副產物原始數據.....141
附錄四 Visual MINTEQ 3.1使用說明.....143

Allen, J. M., Allen, S. K., & Baertschi, S. W. 2-Nitrobenzaldehyde: a convenient UV-A and UV-B chemical actinometer for drug photostability testing. J. Pharm. Biomed. Ana. 2000, 24, 167-178.
Asghar, B. H., Altass, H. M., & Fawzy, A. Transition metal-catalyzed oxidation of l-asparagine by platinum(IV) in acid medium: a kinetic and mechanistic study. Transit. Met. Chem. 2015, 40, 587-594.
Atkins, P. W., & De Paula, J. Atkins' Physical chemistry (10th ed. ed.). 2014, Oxford: Oxford University Press.
Attar, N., Campos, O. A., Vogelauer, M., Cheng, C., Xue, Y., Schmollinger, S., Kurdistani, S. K. The histone H3-H4 tetramer is a copper reductase enzyme. Science 2020, 369, 59-64.
Avila, L. A., Massey, J. H., Senseman, S. A., Armbrust, K. L., Lancaster, S. R., McCauley, G. N., & Chandler, J. M. Imazethapyr Aqueous Photolysis, Reaction Quantum Yield, and Hydroxyl Radical Rate Constant. J. Agric. Food Chem. 2006, 54, 2635-2639.
Bagchi, P., Morgan, M. T., Bacsa, J., & Fahrni, C. J. Robust Affinity Standards for Cu(I) Biochemistry. J. Am. Chem. Soc. 2013, 135, 18549-18559.
Balasurya, S., Syed, A., Thomas, A. M., Bahkali, A. H., Elgorban, A. M., Raju, L. L., & Khan, S. S. Highly sensitive and selective colorimetric detection of arginine by polyvinylpyrrolidone functionalized silver nanoparticles. J. Mol. Liq. 2020, 300, 112361.
Bogh, M. K. Vitamin D production after UVB: aspects of UV-related and personal factors. Scand. J. Clin. Lab. Invest. Suppl. 2012, 243, 24-31.
Borer, P., & Hug, S. J. Photo-redox reactions of dicarboxylates and α-hydroxydicarboxylates at the surface of Fe(III)(hydr)oxides followed with in situ ATR-FTIR spectroscopy. J Colloid Interface Sci 2014, 416, 44-53.
Brauer, H.-D., & Schmidt, R. A new reusable chemical actinometer for UV irradiation in the 248 - 334 nm range. Photochem. Photobiol. 1983, 37, 587-591.
Bruland, K. W., Rue, E. L., Donat, J. R., Skrabal, S. A., & Moffett, J. W. Intercomparison of voltammetric techniques to determine the chemical speciation of dissolved copper in a coastal seawater sample. Anal. Chim. Acta 2000, 405, 99-113.
Buck, K. N., & Bruland, K. W. (2005). Copper speciation in San Francisco Bay: A novel approach using multiple analytical windows. Mar Chem 2005 96, 185-198.
Buerge-Weirich, D., & Sulzberger, B. Formation of Cu(I) in Estuarine and Marine Waters:  Application of a New Solid-Phase Extraction Method To Measure Cu(I). Environ. Sci. Technol. 2004, 38, 1843-1848.
Bunce, N. J., Lamarre, J., & Vaish, S. P. Photorearrangement of Azoxybenzene to 2-Hydroxyazobenzene: A Convenient Chemical Actinometer. Photochem. Photobiol. 1984, 39, 531-533.
Chen, D., Darabedian, N., Li, Z., Kai, T., Jiang, D., & Zhou, F. An improved Bathocuproine assay for accurate valence identification and quantification of copper bound by biomolecules. Anal. Biochem. 2016, 497, 27-35.
Dai, Y., Liu, Z., Bai, Y., Chen, Z., Qin, J., & Feng, F. A novel highly fluorescent S, N, O co-doped carbon dots for biosensing and bioimaging of copper ions in live cells. RSC Advances 2018, 8, 42246-42252.
Das, S., Johnson, G. R. A., Nazhat, N. B., & Saadalla-Nazhat, R. Ligand decomposition in the photolysis of copper(II)–amino-acid complexes in aqueous solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1984, 80, 2759-2766.
Deschamps, P., Zerrouk, N., Nicolis, I., Martens, T., Curis, E., Charlot, M. F., Tomas, A. Copper(II)–L-glutamine complexation study in solid state and in aqueous solution. Inorganica Chim. Acta 2003, 353, 22-34.
El-Maghrabey, M., Suzuki, H., Kishikawa, N., & Kuroda, N. A sensitive chemiluminescence detection approach for determination of 2,4-dinitrophenylhydrazine derivatized aldehydes using online UV irradiation – luminol CL reaction. Application to the HPLC analysis of aldehydes in oil samples. Talanta 2021, 233, 122522.
Faust, B. C. Experimental Determination of Molar Absorptivities and Quantum Yields for Individual Complexes of a Labile Metal in Dilute Solution. Environ. Sci. Technol. 1996, 30, 1919-1922.
Fawzy, A., Ashour, S. S., & Musleh, M. A. Base-catalyzed oxidation of L-asparagine by alkaline permanganate and the effect of alkali metal ion catalysts: a kinetic and mechanistic approach. React. Kinet. Mech. Catal. 2014, 111(2), 443-460.
Galbavy, E., Ram, K., & Anastasio, C. 2-Nitrobenzaldehyde as a chemical actinometer for solution and ice photochemistry. J. Photochem. Photobiol. A: Chemistry 2010, 209, 186-192.
Glišić, B. Đ., Rychlewska, U., & Djuran, M. I. Reactions and structural characterization of gold(iii) complexes with amino acids, peptides and proteins. Dalton Trans. 2012, 41, 6887-6901.
Goldberg, M. C., Cunningham, K. M., & Weiner, E. R. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions. J. Photochem. Photobiol. A: Chemistry 1993, 73, 105-120.
Goldstein, S., & Rabani, J.. The ferrioxalate and iodide–iodate actinometers in the UV region. J. Photochem. Photobiol. A: Chemistry 2008, 193, 50-55.
Grabo, J. E., Trotta, S. M., & Baldwin, M. J. Minor changes in salicylidene/α-hydroxy acid-containing chelates cause major changes in structure and photochemistry of their Fe(III) complexes. Inorg. Chem. 2017, 84, 204-206.
Gustafsson, J. P. Visual MINTEQ 3.0 user guide. KTH, Department of Land and Water Recources, Stockholm, Sweden. 2011.
Hao, J., Wang, M., Wang, S., Huang, Y., & Cao, D. Dissolution-enhanced emission of 1,3,6,8-Tetrakis(p-benzoic acid)pyrene for detecting arginine and lysine amino acids. Dyes Pigm. 2020, 175, 108131.
He, L.-P., Sun, S.-Y., Mu, Y.-Y., Song, X.-F., & Yu, J.-G. Recovery of Lithium, Nickel, Cobalt, and Manganese from Spent Lithium-Ion Batteries Using l-Tartaric Acid as a Leachant. ACS Sustain. Chem. Eng. 2017, 5, 714-721.
Huang, P., Wu, F., & Mao, L. Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain. Anal. Chem. 2015, 87, 6834-6841.
Inoue, N., & Takaya, M. Reactivity and relative reaction rates of formaldehyde, acetaldehyde, and acetone coexisting with large quantities of acetone on 2,4-dinitrophenylhydrazine-impregnated filters. Anal. Methods 2019, 11, 2785-2789.
Jin, L.-H., & Han, C.-S. Ultrasensitive and Selective Fluorimetric Detection of Copper Ions Using Thiosulfate-Involved Quantum Dots. Anal. Chem. 2014, 86, 7209-7213.
John, R. T. S., & Brill, W. J. Inhibitory effect of methylalanine on glucose-grown Azotobacter vinelandii. Biochim Biophys Acta Gen Subj 1972, 261, 63-69.
Kirk, K. A., & Andreescu, S. Easy-to-Use Sensors for Field Monitoring of Copper Contamination in Water and Pesticide-Sprayed Plants. Anal. Chem. 2019, 91, 13892-13899.
Kuo, M. T., Chen, H. H. W., Feun, L. G., & Savaraj, N. Targeting the Proline–Glutamine–Asparagine–Arginine Metabolic Axis in Amino Acid Starvation Cancer Therapy. Pharmaceuticals 2021, 14, 72.
Landner, L., & Reuther, R. Metals in Society and in the Environment: A Critical Review of Current Knowledge on Fluxes, Speciation, Bioavailability and Risk for Adverse Effects of Copper, Chromium, Nickel and Zinc , 2005, 8.
Lewis, S. J., & Smith, G. D. Alcohol, ALDH2, and esophageal cancer: a meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2005, 14, 1967-1971.
Li, J., Ma, J., Dai, R., Wang, X., Chen, M., Waite, T. D., & Wang, Z. Self-Enhanced Decomplexation of Cu-Organic Complexes and Cu Recovery from Wastewaters Using an Electrochemical Membrane Filtration System. Environ. Sci. Technol. 2021, 55, 655-664.
Li, Y., & Wang, W.-X. Protein molecular responses of field-collected oysters Crassostrea hongkongensis with greatly varying Cu and Zn body burdens. Aquat. Toxicol. 2021, 232, 105749.
Li, Z., Wu, B., Zhang, G., Gan, Y., & Zhang, S. Enhanced decomplexation of Cu(II)-EDTA: The role of acetylacetone in Cu-mediated photo-Fenton reactions. Chem. Eng. J. 2018, 358.
Lin, C.-J., Hsu, C.-S., Wang, P.-Y., Lin, Y.-L., Lo, Y.-S., & Wu, C.-H. Photochemical Redox Reactions of Copper(II)–Alanine Complexes in Aqueous Solutions. Inorg. Chem. 2014, 53, 4934-4943.
Lin, Y.-L., Wang, P.-Y., Hsieh, L.-L., Ku, K.-H., Yeh, Y.-T., & Wu, C.-H. Determination of linear aliphatic aldehydes in heavy metal containing waters by high-performance liquid chromatography using 2,4-dinitrophenylhydrazine derivatization. J. Chromatogr. A 2009, 1216, 6377-6381.
Liu, J., & Zhang, W. The Influence of the Environment and Clothing on Human Exposure to Ultraviolet Light. PLOS ONE 2015, 10.
Liu, P., Borrell, P., Božič, M., Kokol, V., Oksman, K., & P Mathew, A. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J. Hazard. Mater. 2015, 294, 177-185.
Matsuzaki, R., Suzuki, S., Yamaguchi, K., Fukui, T., & Tanizawa, K. Spectroscopic studies on the mechanism of the 6-hydroxyDOPA quinone generation in bacterial monoamine oxidase. Biochemistry 1995, 34, 4524-4530.
Maurin, A., Varatharajan, S., Colasson, B., & Reinaud, O. A Water-Soluble Calix[4]arene-Based Ligand for the Selective Linear Coordination and Stabilization of Copper(I) Ion in Aerobic Conditions. Org. Lett. 2014, 16, 5426-5429.
Mi, G., Yang, M., Wang, C., Zhang, B., Hu, X., Hao, H., & Fan, J. A simple “turn off-on” ratio fluorescent probe for sensitive detection of dopamine and lysine/arginine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 253, 119555.
Moffett, J. W., & Zika, R. G. Measurement of copper(I) in surface waters of the subtropical Atlantic and Gulf of Mexico. Geochim. Cosmochim. Acta 1988, 52, 1849-1857.
Moffett, J. W., Zika, R. G., & Petasne, R. G. Evaluation of bathocuproine for the spectro-photometric determination of copper(I) in copper redox studies with applications in studies of natural waters. Anal. Chim. Acta 1985, 175, 171-179.
Morimoto, J., & DeGraff, B. Photochemistry of copper complexes. Copper (II) malonate system. J. Phys. Chem. 1975, 79, 326-331.
Moss, M., & Mellon, M. Colorimetric Determination of Copper with 1,10-Phenanthroline. Ind. Eng. Chem. Res. 1943, 15, 116-118.
Namasivayam, C., & Natarajan, P. Photopolymerization reactions initiated by copper (II)–amino acid chelates: Investigation of the initiating species by flash photolysis. I. J Polym Sci A Polym Chem 1983, 21, 1371-1384.
Natarajan, P., & Ferraudi, G. Photochemical properties of copper(II)-amino acid complexes. Inorg. Chem. 1981, 20, 3708-3712.
Nawara, K., & Waluk, J. Improved Method of Fluorescence Quantum Yield Determination. Anal. Chem. 2017, 89, 8650-8655.
Nevitt, T., Öhrvik, H., & Thiele, D. J. Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Biophys Acta Mol Cell Res 2012, 1823, 1580-1593.
Olsson, S., Sagstuen, E., Bonora, M., & Lund, A. EPR Dosimetric Properties of 2-Methylalanine: EPR, ENDOR and FT-EPR Investigations. J. Radiat. Res. 2002, 157, 113-121.
Pötter, W., Lamotte, S., Engelhardt, H., & Karst, U. Non-porous silica for ultrafast reversed-phase high-performance liquid chromatographic separation of aldehyde and ketone 2,4-dinitrophenylhydrazones. J. Chromatogr. A 1997, 786, 47-55.
Palenik, B., Price, N. M., & Morel, F. M. M. Potential effects of UV-B on the chemical environment of marine organisms: A review. Environ. Pollut. 1991, 70, 117-130.
Pan, Y., Ruan, X., Garg, S., Waite, T. D., Lei, Y., & Yang, X. Copper Inhibition of Triplet-Sensitized Phototransformation of Phenolic and Amine Contaminants. Environ. Sci. Technol. 2020, 54, 9980-9989.
Prieto-Blanco, M. C., Iglesias, M. P., López-Mahía, P., Lorenzo, S. M., & Rodríguez, D. P. Simultaneous determination of carbonyl compounds and polycyclic aromatic hydrocarbons in atmospheric particulate matter by liquid chromatography–diode array detection–fluorescence detection. Talanta 2010, 80, 2083-2092.
Qasemzadeh, A., & Bahrekazemi, M. The effect of calcium carbonate pretreatment at different temperatures on reducing the toxicity of copper sulfate in common carp (Cyprinus carpio Linnaeus, 1758). Ann. Appl. Biol. 2021, 33, 113-130.
Rahn, R. O., Stefan, M. I., Bolton, J. R., Goren, E., Shaw, P.-S., & Lykke, K. R. Quantum Yield of the Iodide–Iodate Chemical Actinometer: Dependence on Wavelength and Concentration. Photochem. Photobiol. 2003, 78, 146-152.
Rapisarda, V. A., Volentini, S. I., Farías, R. N., & Massa, E. M. Quenching of bathocuproine disulfonate fluorescence by Cu(I) as a basis for copper quantification. Anal. Bioanal. Chem. 2002, 307, 105-109.
Rubino, J. T., & Franz, K. J. Coordination chemistry of copper proteins: How nature handles a toxic cargo for essential function. J. Inorg. Biochem. 2012, 107, 129-143.
Rurack, K., & Spieles, M. Fluorescence Quantum Yields of a Series of Red and Near-Infrared Dyes Emitting at 600−1000 nm. Anal. Chem. 2011, 83, 1232-1242.
Ryoka, M., Yoshinori, I., & Katsuyuki, K. Photooxidation of 2-Hydroxy Acids by Copper(II) Species in Aqueous Solution. Bull. Chem. Soc. Jpn. 1980, 53, 1902-1907.
Sýkora, J. Photochemistry of copper complexes and their environmental aspects. Coord Chem Rev 1997, 159, 95-108.
Salthammer, T., Mentese, S., & Marutzky, R. Formaldehyde in the Indoor Environment. Chem. Rev. 2010, 110, 2536-2572.
Shankar, R., Shim, W. J., An, J. G., & Yim, U. H. A practical review on photooxidation of crude oil: laboratory lamp setup and factors affecting it. Water Res. 2015, 68, 304-315.
Smith, G. F., & McCurdy, W. H. 2,9-Dimethyl-1,10-phenanthroline. Anal. Chem. 1952, 24, 371-373.
Smith, G. F., & Wilkins, D. H. New Colorimetric Reagent Specific for Cooper. Anal. Chem. 1953, 25, 510-511.
Smokrović, K., Đilović, I., & Matković-Čalogović, D. The affinity of copper(ii) ions towards l-amino acids in the solid-state: a simple route towards mixed complexes. CrystEngComm 2020, 22, 4963-4968.
Sun, J., Mao, J. D., Gong, H., & Lan, Y. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with α-OH. J. Hazard. Mater. 2009, 168, 1569-1574.
Sun, L., Wu, C.-H., & Faust, B. C. Photochemical Redox Reactions of Inner-Sphere Copper(II)-Dicarboxylate Complexes:  Effects of the Dicarboxylate Ligand Structure on Copper(I) Quantum Yields. J. Phys. Chem. A 1998, 102, 8664-8672.
Tang, S., Wang, Z., Yuan, D., Zhang, C., Rao, Y., Wang, Z., & Yin, K. Ferrous ion-tartaric acid chelation promoted calcium peroxide fenton-like reactions for simulated organic wastewater treatment. J. Clean. Prod. 2020, 268, 122253.
Tavares-Dias, M. Toxic, physiological, histomorphological, growth performance and antiparasitic effects of copper sulphate in fish aquaculture. Aquaculture 2021, 535, 736350.
Uchiyama, S., Inaba, Y., & Kunugita, N. Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine and their subsequent determination by high-performance liquid chromatography. J. Chromatogr. B 2011, 879, 1282-1289.
Uchiyama, S., Kaneko, T., Tokunaga, H., Ando, M., & Otsubo, Y. (2008). Acid-catalyzed isomerization and decomposition of ketone-2,4-dinitrophenylhydrazones. Anal. Chim. Acta 2008, 605, 198-204.
Wardle, B. Principles and applications of photochemistry. Hoboken, N.J.: Wiley. 2009.
Weller, C., Horn, S., & Herrmann, H. Photolysis of Fe(III) carboxylato complexes: Fe(II) quantum yields and reaction mechanisms. J. Photochem. Photobiol. A: Chemistry 2013, 268, 24-36.
Wiwit, Wong, K. H., Fukuda, H., Ogawa, H., Mashio, A. S., Kondo, Y., Obata, H. Wide-range detection of Cu-binding organic ligands in seawater using reverse titration. Mar Chemistry 2021, 230, 103927.
Wong, K. H., Obata, H., Kim, T., Mashio, A. S., Fukuda, H., & Ogawa, H. Organic complexation of copper in estuarine waters: An assessment of the multi-detection window approach. Marine Chemistry 2018, 204, 144-151.
Wu, C.-H., Sun, L., & Faust, B. C. Photochemical Formation of Copper(I) from Copper(II)-Dicarboxylate Complexes:  Effects of Outer-Sphere versus Inner-Sphere Coordination and of Quenching by Malonate. J. Phys. Chem. A 2000, 104, 4989-4996.
Xiao, Z., & Wedd, A. The challenges of determining metal–protein affinities. Nat. Prod. Rep. 2010, 27, 768-789.
Xing, G., Garg, S., Miller, C. J., Pham, A. N., & Waite, T. D. Effect of Chloride and Suwannee River Fulvic Acid on Cu Speciation: Implications to Cu Redox Transformations in Simulated Natural Waters. Environ. Sci. Technol. 2020, 54, 2334-2343.
Xu, H., He, E., Peijnenburg, W. J. G. M., Song, L., Zhao, L., Xu, X., Qiu, H. (2021). Contribution of pristine and reduced microbial extracellular polymeric substances of different sources to Cu(II) reduction. J. Hazard. Mater. 2021, 415, 125616.
Yamauchi, O., Odani, A., & Takani, M. Metal–amino acid chemistry. Weak interactions and related functions of side chain groups. J. Am. Chem. Soc., Dalton Trans. 2002, 3411-3421.
Ye, Q., Xu, H., Wang, Q., Huo, X., Wang, Y., Huang, X., Zhang, J. New insights into the mechanisms of tartaric acid enhancing homogeneous and heterogeneous copper-catalyzed Fenton-like systems. J. Hazard. Mater. 2021, 407, 124351.
Zak, B. Simple procedure for the single sample determination of serum copper and iron. Clin. Chim. Acta 1958, 3, 328-334.
Zhang, J., Pavlova, N. N., & Thompson, C. B. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. The EMBO Journal 2017, 36, 1302-1315.
Zhao, J., Chu, G., Pan, B., Zhou, Y., Wu, M., Liu, Y., Xing, B. Homo-Conjugation of Low Molecular Weight Organic Acids Competes with Their Complexation with Cu(II). Environ. Sci. Technol. 2018, 52, 5173-5181.
Zhou, X., & Huang, G. Measurement of Atmospheric Hydroxyacetone, Glycolaldehyde, and Formaldehyde. Environ. Sci. Technol. 2009, 43, 2753-2759.
Zhou, Y., Won, J., Lee, J. Y., & Yoon, J. Studies leading to the development of a highly selective colorimetric and fluorescent chemosensor for lysine. ChemComm 2011, 47, 1997-1999.
Zhu, Y., Fan, W., Feng, W., Wang, Y., Liu, S., Dong, Z., & Li, X. A critical review on metal complexes removal from water using methods based on Fenton-like reactions: Analysis and comparison of methods and mechanisms. J. Hazard. Mater. 2021, 414, 125517.
陳美妤。配位基結構對銅胺基酸錯合物之一價銅光量子產率的影響研究。碩士論文,國立清華大學,新竹,2016。
劉依柔。水相中銅錯合物之羥基對於光反應性探討。碩士論文,國立清華大學,新竹,2018。
張盛德。配位基結構對水相中銅羥基酸錯合物光生成一價銅之效應。碩士論文,國立清華大學,新竹,2019。
楊雅婷。水相中多元羧酸配位基之銅錯合物光生成一價銅及羰基化合物研究。碩士論文,國立清華大學,新竹,2020。
(此全文20261011後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *