|
1. Dwivedi, N., Shah, J., Mishra, V., Mohd Amin, M. C. I., Iyer, A. K., Tekade, R. K., & Kesharwani, P. Dendrimer-mediated approaches for the treatment of brain tumor. Journal of Biomaterials science, Polymer edition, 27(7), 557-580, 2016. 2. Siegel, R. L., Miller, K. D., & Jemal, A. Cancer statistics, 2019. 3. CA: a cancer journal for clinicians, 69(1), 7-34, 2019. 4. Pinel, S., Thomas, N., Boura, C., & Barberi-Heyob, M. Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment. Advanced drug delivery reviews, 138, 344-357, 2019. 5. Stewart, C., Stewart, B., & Ware, M. L. Innovations in Metastatic Brain Tumor Treatment. In Brain and Spinal Tumors-Primary and Secondary. IntechOpen, 2019. 6. Daneman, R., & Prat, A. The blood–brain barrier. Cold Spring Harbor perspectives in biology, 7(1), a020412, 2015. 7. Zhou, Y., Peng, Z., Seven, E. S., & Leblanc, R. M. Crossing the blood-brain barrier with nanoparticles. Journal of controlled release, 270, 290-303, 2018. 8. Ballabh, P., Braun, A., & Nedergaard, M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiology of disease, 16(1), 1-13, 2004. 9. Pardridge, W. M. Blood–brain barrier delivery. Drug discovery today, 12(1-2), 54-61, 2007. 10. Bobo, R. H., Laske, D. W., Akbasak, A., Morrison, P. F., Dedrick, R. L., & Oldfield, E. H. Convection-enhanced delivery of macromolecules in the brain. Proceedings of the National Academy of Sciences, 91(6), 2076-2080, 1994. 11. Jahangiri, A., Chin, A. T., Flanigan, P. M., Chen, R., Bankiewicz, K., & Aghi, M. K. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. Journal of neurosurgery, 126(1), 191-200, 2017. 12. Healy, A. T., & Vogelbaum, M. A. Convection-enhanced drug delivery for gliomas. Surgical neurology international, 6(Suppl 1), S59, 2015. 13. Vega, R. A., Hachmann, J. T., & Broaddus, W. C. Intratumoral Chemotherapy and Convection-Enhanced Delivery. In Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy (pp. 167-182). Academic Press, 2018. 14. Naidoo, J., Panday, H., Jackson, S., & Grossman, S. A. Optimizing the delivery of antineoplastic therapies to the central nervous system. Oncology, 30(11), 2016. 15. Mehta, A. M., Sonabend, A. M., & Bruce, J. N. Convection-enhanced delivery. Neurotherapeutics, 14(2), 358-371, 2017. 16. Allard, E., Passirani, C., & Benoit, J. P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials, 30(12), 2302-2318, 2009. 17. Vega, R. A., Hachmann, J. T., & Broaddus, W. C. Intratumoral Chemotherapy and Convection-Enhanced Delivery. In Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy (pp. 167-182). Academic Press, 2018. 18. Seo, Y. E., Bu, T., & Saltzman, W. M. Nanomaterials for convection-enhanced delivery of agents to treat brain tumors. Current opinion in biomedical engineering, 4, 1-12, 2017. 19. Zhan, W., & Wang, C. H. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. Journal of Controlled Release, 285, 212-229, 2018. 20. Zhan, W., Arifin, D. Y., Lee, T. K., & Wang, C. H. Mathematical modelling of convection enhanced delivery of carmustine and paclitaxel for brain tumour therapy. Pharmaceutical research, 34(4), 860-873, 2017. 21. Zhan, W., Rodriguez y Baena, F., & Dini, D. Effect of tissue permeability and drug diffusion anisotropy on convection-enhanced delivery. Drug delivery, 26(1), 773-781, 2019. 22. Xi, G., Robinson, E., Mania-Farnell, B., Vanin, E. F., Shim, K. W., Takao, T., ... & Tomita, T. Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomedicine: Nanotechnology, Biology and Medicine, 10(2), 381-391, 2014. 23. Yin, D., Forsayeth, J., & Bankiewicz, K. S. Optimized cannula design and placement for convection-enhanced delivery in rat striatum. Journal of neuroscience methods, 187(1), 46-51, 2010. 24. Seunguk, O. H., Odland, R., Wilson, S. R., Kroeger, K. M., Liu, C., Lowenstein, P. R., ... & Ohlfest, J. R. Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter. Journal of neurosurgery, 107(3), 568-577, 2007. 25. Krauze, M. T., Saito, R., Noble, C., Tamas, M., Bringas, J., Park, J. W., ... & Bankiewicz, K. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. Journal of neurosurgery, 103(5), 923-929, 2005. 26. Debinski, W., & Tatter, S. B. Convection-enhanced delivery for the treatment of brain tumors. Expert review of neurotherapeutics, 9(10), 1519-1527, 2009. 27. Olson, J. J., Zhang, Z., Dillehay, D., & Stubbs, J. Assessment of a balloon-tipped catheter modified for intracerebral convection-enhanced delivery. Journal of neuro-oncology, 89(2), 159-168, 2008. 28. Yin, D., Forsayeth, J., & Bankiewicz, K. S. Optimized cannula design and placement for convection-enhanced delivery in rat striatum. Journal of neuroscience methods, 187(1), 46-51, 2010. 29. Lewis, O., Woolley, M., Johnson, D. E., Fletcher, J., Fenech, J., Pietrzyk, M. W., ... & Gill, S. S. Maximising coverage of brain structures using controlled reflux, convection-enhanced delivery and the recessed step catheter. Journal of neuroscience methods, 308, 337-345, 2018. 30. Naidoo, J., Fiandaca, M., Lonser, R. R., & Bankiewicz, K. Convection-Enhanced Drug Delivery in the Central Nervous System. In Nervous System Drug Delivery (pp. 335-350). Academic Press, 2019. 31. Lueshen, E., Tangen, K., Mehta, A. I., & Linninger, A. Backflow-free catheters for efficient and safe convection-enhanced delivery of therapeutics. Medical engineering & physics, 45, 15-24, 2017. 32. Gill, T., Barua, N. U., Woolley, M., Bienemann, A. S., Johnson, D. E., Murray, G., ... & Moore, P. In vitro and in vivo testing of a novel recessed-step catheter for reflux-free convection-enhanced drug delivery to the brain. Journal of neuroscience methods, 219(1), 1-9, 2013. 33. Chakroun, R. W., Zhang, P., Lin, R., Schiapparelli, P., Quinones‐Hinojosa, A., & Cui, H. Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10(1), e1479, 2018. 34. Cho, K., Wang, X. U., Nie, S., & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 14(5), 1310-1316, 2008. 35. Liu, Z., Jiao, Y., Wang, Y., Zhou, C., & Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Advanced drug delivery reviews, 60(15), 1650-1662, 2008. 36. Saallah, S., & Lenggoro, I. W. Nanoparticles carrying biological molecules: Recent advances and applications. KONA Powder and Particle Journal, 35, 89-111, 2018. 37. Prasad, M., Lambe, U. P., Brar, B., Shah, I., Manimegalai, J., Ranjan, K., ... & Iqbal, H. M. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomedicine & Pharmacotherapy, 97, 1521-1537, 2018. 38. Wilczewska, A. Z., Niemirowicz, K., Markiewicz, K. H., & Car, H. Nanoparticles as drug delivery systems. Pharmacological reports, 64(5), 1020-1037, 2012. Owens, G. J., Singh, R. K., Foroutan, F., Alqaysi, M., Han, C. M., Mahapatra, C., ... & Knowles, J. C. Sol–gel based materials for biomedical applications. Progress in Materials Science, 77, 1-79, 2016. 39. Popović, Z., Liu, W., Chauhan, V. P., Lee, J., Wong, C., Greytak, A. B., ... & Bawendi, M. G. A nanoparticle size series for in vivo fluorescence imaging. Angewandte Chemie International Edition, 49(46), 8649-8652, 2010. 40. McNeil, S. E. Nanotechnology for the biologist. Journal of leukocyte biology, 78(3), 585-594, 2005. 41. Master, A. M., & Sen Gupta, A. EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine, 7(12), 1895-1906, 2012. 42. Shen, Z., Nieh, M. P., & Li, Y. Decorating nanoparticle surface for targeted drug delivery: opportunities and challenges. Polymers, 8(3), 83, 2016. 43. Yoo, J., Park, C., Yi, G., Lee, D., & Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers, 11(5), 640, 2019. 44. Nasrabadi, H. T., Abbasi, E., Davaran, S., Kouhi, M., & Akbarzadeh, A. Bimetallic nanoparticles: preparation, properties, and biomedical applications. Artificial cells, nanomedicine, and biotechnology, 44(1), 376-380, 2016. 45. Moreau, L. M., Schurman, C. A., Kewalramani, S., Shahjamali, M. M., Mirkin, C. A., & Bedzyk, M. J. How Ag nanospheres are transformed into AgAu nanocages. Journal of the American Chemical Society, 139(35), 12291-12298, 2017. 46. Gilroy, K. D., Ruditskiy, A., Peng, H. C., Qin, D., & Xia, Y. Bimetallic nanocrystals: syntheses, properties, and applications. Chemical reviews, 116(18), 10414-10472, 2016. 47. Wei, X., Fan, Q., Liu, H., Bai, Y., Zhang, L., Zheng, H., ... & Gao, C. Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering. Nanoscale, 8(34), 15689-15695, 2016. 48. Xu, Y., Liu, H., & Jiang, T. Reliable quantitative SERS analysis mediated by Ag nano coix seeds with internal standard molecule. Journal of Nanoparticle Research, 21(5), 107, 2019. 49. Kim, W., Lee, J. C., Lee, G. J., Park, H. K., Lee, A., & Choi, S. Low-cost label-free biosensing bimetallic cellulose strip with SILAR-synthesized silver core–gold shell nanoparticle structures. Analytical chemistry, 89(12), 6448-6454, 2017. 50. Sotiriou, G. A., Etterlin, G. D., Spyrogianni, A., Krumeich, F., Leroux, J. C., & Pratsinis, S. E. Plasmonic biocompatible silver–gold alloyed nanoparticles. Chemical Communications, 50(88), 13559-13562, 2014. 51. Liu, H., Liu, T., Zhang, L., Han, L., Gao, C., & Yin, Y. Etching‐Free Epitaxial Growth of Gold on Silver Nanostructures for High Chemical Stability and Plasmonic Activity. Advanced Functional Materials, 25(34), 5435-5443, 2015. 52. Lee, K. E., Hesketh, A. V., & Kelly, T. L. Chemical stability and degradation mechanisms of triangular Ag, Ag@ Au, and Au nanoprisms. Physical Chemistry Chemical Physics, 16(24), 12407-12414, 2014. 53. Daniel, J. R., McCarthy, L. A., Ringe, E., & Boudreau, D. Enhanced control of plasmonic properties of silver–gold hollow nanoparticles via a reduction-assisted galvanic replacement approach. RSC advances, 9(1), 389-396, 2019. 54. Krishnan, S. K., Esparza, R., Flores-Ruiz, F. J., Padilla-Ortega, E., Luna-Bárcenas, G., Sanchez, I. C., & Pal, U. Seed-mediated growth of Ag@ Au nanodisks with improved chemical stability and surface-enhanced Raman scattering. ACS omega, 3(10), 12600-12608, 2018. 55. Shankar, C., Dao, A. T., Singh, P., Higashimine, K., Mott, D. M., & Maenosono, S. Chemical stabilization of gold coated by silver core–shell nanoparticles via electron transfer. Nanotechnology, 23(24), 245704, 2012. 56. Espinosa, A., Curcio, A., Cabana, S., Radtke, G., Bugnet, M., Kolosnjaj-Tabi, J., ... & Abou-Hassan, A. Intracellular biodegradation of Ag nanoparticles, storage in ferritin, and protection by a Au shell for enhanced photothermal therapy. ACS nano, 12(7), 6523-6535, 2018. 57. Park, E. J., Yi, J., Kim, Y., Choi, K., & Park, K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in vitro, 24(3), 872-878, 2010. 58. Zhang, T., Wang, L., Chen, Q., & Chen, C. Cytotoxic potential of silver nanoparticles. Yonsei medical journal, 55(2), 283-291, 2014. 59. Lai, Y., Dong, L., Zhou, H., Yan, B., Chen, Y., Cai, Y., & Liu, J. Coexposed nanoparticulate Ag alleviates the acute toxicity induced by ionic Ag+ in vivo. Science of The Total Environment, 138050, 2020. 60. Agnihotri, S., Mukherji, S., & Mukherji, S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5(16), 7328-7340, 2013. 61. Fahmy, H. M., Mosleh, A. M., Elghany, A. A., Shams-Eldin, E., Serea, E. S. A., Ali, S. A., & Shalan, A. E. Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC advances, 9(35), 20118-20136, 2019. 62. Shankar, C., Dao, A. T., Singh, P., Higashimine, K., Mott, D. M., & Maenosono, S. Chemical stabilization of gold coated by silver core–shell nanoparticles via electron transfer. Nanotechnology, 23(24), 245704, 2012. 63. Levard, C., Hotze, E. M., Colman, B. P., Dale, A. L., Truong, L., Yang, X. Y., ... & Bernhardt, E. S. Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environmental science & technology, 47(23), 13440-13448, 2013. 64. Jain, P. K., Huang, X., El-Sayed, I. H., & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of chemical research, 41(12), 1578-1586, 2008. 65. Jaque, D., Maestro, L. M., Del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., ... & Sole, J. G. Nanoparticles for photothermal therapies. nanoscale, 6(16), 9494-9530, 2014. 66. Yang, G., Liu, J., Wu, Y., Feng, L., & Liu, Z. Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coordination Chemistry Reviews, 320, 100-117, 2016. 67. Daniel, J. R., McCarthy, L. A., Ringe, E., & Boudreau, D. Enhanced control of plasmonic properties of silver–gold hollow nanoparticles via a reduction-assisted galvanic replacement approach. RSC advances, 9(1), 389-396, 2019. 68. Mohan, S., & Subramanian, B. Surface enhanced raman scattering studies of silver-gold normal and inverted core-shell nanostructures on their efficiency of detecting molecules. Procedia Engineering, 92, 19-25, 2014. 69. Toshima, N., & Yonezawa, T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New Journal of Chemistry, 22(11), 1179-1201, 1998. 70. Sun, L., Yin, Y., Lv, P., Su, W., & Zhang, L. Green controllable synthesis of Au–Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity. RSC advances, 8(8), 3964-3973, 2018. 71. Dutta, D., Sahoo, A. K., Chattopadhyay, A., & Ghosh, S. S. Bimetallic silver nanoparticle–gold nanocluster embedded composite nanoparticles for cancer theranostics. Journal of Materials Chemistry B, 4(4), 793-800, 2016. 72. Chugh, H., Sood, D., Chandra, I., Tomar, V., Dhawan, G., & Chandra, R. Role of gold and silver nanoparticles in cancer nano-medicine. Artificial cells, nanomedicine, and biotechnology, 46(sup1), 1210-1220, 2018. 73. Li, Y., Lu, W., Huang, Q., Li, C., & Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine, 5(8), 1161-1171, 2010. 74. Feng, W., Nie, W., Cheng, Y., Zhou, X., Chen, L., Qiu, K., ... & He, C. In vitro and in vivo toxicity studies of copper sulfide nanoplates for potential photothermal applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(4), 901-912, 2015. 75. Goel, S., Chen, F., & Cai, W. Synthesis and biomedical applications of sulfide nanoparticles: from sensors to theranostics. Small, 10(4), 631-645, 2014. 76. Wang, D., Dong, H., Li, M., Cao, Y., Yang, F., Zhang, K., ... & Zhang, X. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS nano, 12(6), 5241-5252, 2018. 77. Córdova-Castro, R. M., Casavola, M., van Schilfgaarde, M., Krasavin, A. V., Green, M. A., Richards, D., & Zayats, A. V. Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersion. ACS nano, 13(6), 6550-6560, 2019. 78. Chen, F., Hong, H., Goel, S., Graves, S. A., Orbay, H., Ehlerding, E. B., ... & Cai, W. In vivo tumor vasculature targeting of CuS@ MSN based theranostic nanomedicine. ACS nano, 9(4), 3926-3934, 2015. 79. Xie, Y. Q., Wei, L., & Tang, L. Immunoengineering with biomaterials for enhanced cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10(4), e1506, 2018. 80. Fan, Y., & Moon, J. J. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines, 3(3), 662-685, 2015. 81. Mellman, I., Coukos, G., & Dranoff, G. Cancer immunotherapy comes of age. Nature, 480(7378), 480-489, 2011. 82. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A., & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Reviews Cancer, 8(4), 299-308, 2008. 83. Lesterhuis, W. J., Haanen, J. B., & Punt, C. J. Cancer immunotherapy–revisited. Nature reviews Drug discovery, 10(8), 591-600, 2011. 84. Couzin-Frankel, J. Cancer immunotherapy, 2013. 85. Louveau, A., Smirnov, I., Keyes, T. J., Eccles, J. D., Rouhani, S. J., Peske, J. D., ... & Harris, T. H. Structural and functional features of central nervous system lymphatic vessels. Nature, 523(7560), 337-341, 2015. 86. Jackson, C. M., Lim, M., & Drake, C. G. Immunotherapy for brain cancer: recent progress and future promise. Clinical Cancer Research, 20(14), 3651-3659, 2014. 87. Aspelund, A., Antila, S., Proulx, S. T., Karlsen, T. V., Karaman, S., Detmar, M., ... & Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. Journal of Experimental Medicine, 212(7), 991-999, 2015. 88. Jackson, C. M., Choi, J., & Lim, M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nature immunology, 20(9), 1100-1109, 2019. 89. Dănăilă, L., Ghyka, G., & Ursaciuc, C. Interleukin-2 (IL-2) in the treatment of malignant brain tumors (glioblastomas). Romanian journal of neurology and psychiatry= Revue roumaine de neurologie et psychiatrie, 31(3-4), 195, 1993. 90. Dunn‐Pirio, A. M., & Vlahovic, G. Immunotherapy approaches in the treatment of malignant brain tumors. Cancer, 123(5), 734-750, 2017. 91. Pule, M. A., Savoldo, B., Myers, G. D., Rossig, C., Russell, H. V., Dotti, G., ... & Yvon, E. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature medicine, 14(11), 1264-1270, 2008. 92. Till, B. G., Jensen, M. C., Wang, J., Qian, X., Gopal, A. K., Maloney, D. G., ... & Raubitschek, A. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood, The Journal of the American Society of Hematology, 119(17), 3940-3950, 2012. 93. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., & June, C. H. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N engl j Med, 365, 725-733, 2011. 94. Miao, H., Choi, B. D., Suryadevara, C. M., Sanchez-Perez, L., Yang, S., De Leon, G., ... & Archer, G. E. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PloS one, 9(4), e94281, 2014. 95. Chen, Q., Xu, L., Liang, C., Wang, C., Peng, R., & Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature communications, 7(1), 1-13, 2016. 96. Sun, C., Lee, J. S., & Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews, 60(11), 1252-1265, 2008. 97. Revia, R. A., & Zhang, M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Materials Today, 19(3), 157-168, 2016. 98. Chiang, C. S., Lin, Y. J., Lee, R., Lai, Y. H., Cheng, H. W., Hsieh, C. H., ... & Chen, S. Y. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nature nanotechnology, 13(8), 746-754, 2018. 99. Gobbo, O. L., Sjaastad, K., Radomski, M. W., Volkov, Y., & Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. Theranostics, 5(11), 1249, 2015. 100. Kesharwani, P., Jain, K., & Jain, N. K. Dendrimer as nanocarrier for drug delivery. Progress in Polymer Science, 39(2), 268-307, 2014. 101. Xie, J., Zhao, R., Gu, S., Dong, H., Wang, J., Lu, Y., ... & Shao, J. The architecture and biological function of dual antibody-coated dendrimers: enhanced control of circulating tumor cells and their hetero-adhesion to endothelial cells for metastasis prevention. Theranostics, 4(12), 1250, 2014. 102. Liu, C., Shao, N., Wang, Y., & Cheng, Y. Clustering small dendrimers into nanoaggregates for efficient DNA and siRNA delivery with minimal toxicity. Advanced Healthcare Materials, 5(5), 584-592, 2016. 103. Aulenta, F., Hayes, W., & Rannard, S. Dendrimers: a new class of nanoscopic containers and delivery devices. European Polymer Journal, 39(9), 1741-1771, 2003. 104. Devarakonda, B., Hill, R. A., Liebenberg, W., Brits, M., & de Villiers, M. M. Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. International journal of pharmaceutics, 304(1-2), 193-209, 2005. 105. Bharali, D. J., Khalil, M., Gurbuz, M., Simone, T. M., & Mousa, S. A. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. International journal of nanomedicine, 4, 1, 2009. 106. Kono, K. Dendrimer-based bionanomaterials produced by surface modification, assembly and hybrid formation. Polymer journal, 44(6), 531-540, 2012. 107. Li, H. J., Du, J. Z., Liu, J., Du, X. J., Shen, S., Zhu, Y. H., ... & Wang, J. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS nano, 10(7), 6753-6761, 2016.
|