帳號:guest(18.117.166.239)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許名孜
作者(外文):Hsu, Ming-Tzu
論文名稱(中文):可穿透之脂質體修飾硫化銅/金銀三角奈米板載體透過對流增強遞送系統應用於腦瘤治療
論文名稱(外文):Penetrated Delivery of Lipid-Coated Triangular CuS-tagged Ag@Au Core/Shell Nanoplates to Brain Tumor through Convection-Enhanced Delivery
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):姜文軒
陳冠宇
彭志剛
口試委員(外文):Chiang, Wen-Hsuan
Chen, Guan-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:107012507
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:84
中文關鍵詞:金銀合金奈米粒子硫化銅脂質體免疫佐劑磁電效應對流增強遞送系統腦瘤治療
外文關鍵詞:Ag@Au nanoplatesCuS nanocrystalsliposomeImmunoadjuvantmagnetoelectric effectsconvection-enhanced deliverybrain cancer therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:296
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
雖然醫療逐漸進步,但比起以往人們罹患癌症的機率也提高。近年來,癌症也躍升為國人十大死因之首,如何積極面對癌症治療並研發出高效率的治療方式已增加病人癒後的生活品質已經是不容忽視的問題。
其中因為腦區獨特的組織—血腦障壁的存在,雖然保護外來物質不易侵入腦區維持其正常的運作,卻也為藥物遞送帶來治療上的困難。現今臨床上的腦癌治療方式,包括:手術切除、放射治療與化學藥物治療…等方式,術後病人常有嘔吐、疲倦無力、腹瀉…等副作用,受到血腦障壁的阻隔,許多方式受到限制,比起其他癌症,治療效果也有限。憑藉著世界各地的專家們的努力,藥物遞送系統如火如荼得發展,當今炙手可熱的小分子藥物自然是各國關注鑽研的對象。許多研究學者們紛紛開發奈米藥物載體,透過標靶藥物治療結合藥物控制釋放的特性,提高藥物在腫瘤區的累積已達到治療效果。即便如此,仍有絕大部分得分子被血腦障壁擋住,預期成效因此大打折扣。因此唯有同時增加小分子藥物療效及找到穿透血腦障壁的方法,雙管齊下,才能達到治療效果,也藉此提高病人癒後的生活機能,希望降低其身體負擔。
因此,在本研究中,我們合成出具有「可穿透之脂質體修飾硫化銅/金銀三角奈米板載體」平台,包覆脂質體以提高藥物水溶性及生物相容性,並裝載含有含有免疫調節功能的免疫佐劑 Resiquimod (R-848) 的次級載體-樹狀聚合物。載體的部分首先利用Ag作為犧牲模板,接著加入聚乙烯吡咯烷酮(PVP ) 作為用於調節晶體生長尺寸的封端劑,並以四氯合金酸(HAuCl4)作為Au源,經由TEM的分析,確定成功合成出大小約90-120nm且具穩定性的Ag@Au奈米板。接著以熱裂解法同樣以TEM鑑定,確定合成出大小約20 nm的硫化銅,將兩者結合不但增加奈米粒子的接觸面積同時也降低硫化銅的生物毒性並解決其尺寸太小容易被生物降解的問題。
另外,選擇對流增強遞送系統 ( Convection-enhanced delivery, CED)作為輸送藥物的方式,如此一來可以直接穿越血腦障壁並準確注射藥物載體進入腫瘤區,同時提高載體在腫瘤區的累積量及藥物濃度,提高治療效果。在動物實驗上,透過CED的方式,使得奈米粒子在腫瘤區有良好的分布,且因為流速控制得當,並未產生逆流的現象。對小鼠施以高週波治療後,藉由磁電效應誘發免疫反應,在腫瘤區T細胞有明顯增加的情形,達到預期結果。
總結「可穿透之脂質體修飾硫化銅/金銀三角奈米板載體」為一個具有前瞻性的治療平台,除了本身具有熱療效外,裝載R-848免疫佐劑可以增加其免疫反應,有效達到腫瘤抑制的目標,為往後腦瘤治療開闢新的機會。


關鍵字:金銀合金奈米粒子、硫化銅、脂質體、免疫佐劑、磁電效應
、對流增強遞送系統、腦瘤治療
With the progress of nanotechnology, there are more and more treatment approaches in the recent years. However, the brain tumor is still regarded as a troublesome disease to treat because of its characterization of high mortality and high recurrence. In this study, we successfully combine Ag@Au nanoplates with copper sulfide (CuS) nanocrystals as carriers, and modify with liposome to increase the solubility of them. Moreover, we consider dendrimers as secondary drug carrier which can deliver the immune modulator (R848) in order to enhance the immune response, and increase penetration of nanoparticles into the target sites. Injecting nanoparticles through convection-enhance delivery (CED) system can both across directly to the blood-brain barrier (BBB) and increase the accumulation of carriers in the brain tumor. The outcome suggests that the nanoparticles we design present low toxicity and high cellular uptake efficiency, and can be triggered by the high-frequency magnetic field (HFMF). By doing so, we finally stop brain cancer cells from growing fast and extend the survival days of mice. It is a promising and potential nanoparticle in the drug delivery system.

Key words:Ag@Au nanoplates, CuS nanocrystals, liposome, Immunoadjuvant, magnetoelectric effects, convection-enhanced delivery, brain cancer therapy
中文摘要 I
Abstract III
Table of contents IV
List of Scheme VII
List of Figure VIII
Chapter 1 Introduction 1
Chapter 2 Literature review and theory 3
2.1 Brain cancer 3
2.1.1 The blood-brain barrier (BBB) 4
2.2 Convection- enhanced delivery system 5
2.2.1 Introduction of Convection-enhanced delivery (CED) system 6
2.2.2 Convection-enhanced delivery system as the treatment of brain tumors 8
2.2.3 Cather design 10
2.3 Nanoparticles as drug delivery system 13
2.3.1 The particle size effect 16
2.4 Nanocomposites targeted tumor delivery system 18
2.5 Characteristics of Gold-silver alloy nanoparticles 19
2.5.1 Gold-silver alloy nanoparticles reduce the toxicity of silver 24
2.5.2 Application of gold-silver alloy nanoparticle in photothermal therapy 25
2.6 Characteristics and application of copper sulfide (CuS) nanoparticles 28
2.7 Cancer Immunotherapy 30
2.7.1 Immunotherapy of brain cancer 31
2.8 The magnetic nanoparticles property and cancer applications 34
2.9 Dendrimer 35
Chapter 3 Experimental section 37
3.1 Materials 37
3.2 Apparatus 39
3.3 Method 41
3.3.1 Synthesis of Ag nanoplates (seeds) 41
3.3.2 Preparation of Growth Solution of Au 41
3.3.3 Synthesis of Triangular Ag@Au Core/Shell Nanoplates 42
3.3.4 Synthesis of Copper Sulfide (CuS) nanoctystals 43
3.3.5 Synthesis of Ag@Au-CuS 44
3.3.6 Synthesis of Ag@Au-CuS@lipo.-Den-R848 nanoparticles 44
3.3.7 Characterization 46
3.3.8 Analysis of Ag@Au core/shell nanoplates 47
3.3.9 Cell culture 47
3.3.10 Cellular Uptake 47
3.3.11 Cell viability assay 49
3.3.12 Penetration of the nanoparticles in ALTS1C1 spheroids 49
3.3.13 In vivo experiments 51
Chapter 4 Results and Discussions 53
4.1 Synthesis and characterization of Ag nanoplates, Ag@Au triangular nanoplates, copper sulfide (CuS), Ag@Au-CuS@lipo 53
4.2 Cell uptake and cytotoxicity of Ag@Au-CuS@lipo-Den 62
4.3 Penetration of Ag@Au-CuS@lipo-Den nanoparticles into tumor spheroids 66
4.4 In vivo animal experiment 68
4.4.1 In vivo animal experiment for biodistribution 68
4.4.2 The influence of immune system triggered by high-frequency magnetic field (HFMF) 71
4.4.3 In vivo therapy 73
Chapter 5 Conclusions 75
Reference 76

1. Dwivedi, N., Shah, J., Mishra, V., Mohd Amin, M. C. I., Iyer, A. K., Tekade, R. K., & Kesharwani, P. Dendrimer-mediated approaches for the treatment of brain tumor. Journal of Biomaterials science, Polymer edition, 27(7), 557-580, 2016.
2. Siegel, R. L., Miller, K. D., & Jemal, A. Cancer statistics, 2019.
3. CA: a cancer journal for clinicians, 69(1), 7-34, 2019.
4. Pinel, S., Thomas, N., Boura, C., & Barberi-Heyob, M. Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment. Advanced drug delivery reviews, 138, 344-357, 2019.
5. Stewart, C., Stewart, B., & Ware, M. L. Innovations in Metastatic Brain Tumor Treatment. In Brain and Spinal Tumors-Primary and Secondary. IntechOpen, 2019.
6. Daneman, R., & Prat, A. The blood–brain barrier. Cold Spring Harbor perspectives in biology, 7(1), a020412, 2015.
7. Zhou, Y., Peng, Z., Seven, E. S., & Leblanc, R. M. Crossing the blood-brain barrier with nanoparticles. Journal of controlled release, 270, 290-303, 2018.
8. Ballabh, P., Braun, A., & Nedergaard, M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiology of disease, 16(1), 1-13, 2004.
9. Pardridge, W. M. Blood–brain barrier delivery. Drug discovery today, 12(1-2), 54-61, 2007.
10. Bobo, R. H., Laske, D. W., Akbasak, A., Morrison, P. F., Dedrick, R. L., & Oldfield, E. H. Convection-enhanced delivery of macromolecules in the brain. Proceedings of the National Academy of Sciences, 91(6), 2076-2080, 1994.
11. Jahangiri, A., Chin, A. T., Flanigan, P. M., Chen, R., Bankiewicz, K., & Aghi, M. K. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. Journal of neurosurgery, 126(1), 191-200, 2017.
12. Healy, A. T., & Vogelbaum, M. A. Convection-enhanced drug delivery for gliomas. Surgical neurology international, 6(Suppl 1), S59, 2015.
13. Vega, R. A., Hachmann, J. T., & Broaddus, W. C. Intratumoral Chemotherapy and Convection-Enhanced Delivery. In Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy (pp. 167-182). Academic Press, 2018.
14. Naidoo, J., Panday, H., Jackson, S., & Grossman, S. A. Optimizing the delivery of antineoplastic therapies to the central nervous system. Oncology, 30(11), 2016.
15. Mehta, A. M., Sonabend, A. M., & Bruce, J. N. Convection-enhanced delivery. Neurotherapeutics, 14(2), 358-371, 2017.
16. Allard, E., Passirani, C., & Benoit, J. P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials, 30(12), 2302-2318, 2009.
17. Vega, R. A., Hachmann, J. T., & Broaddus, W. C. Intratumoral Chemotherapy and Convection-Enhanced Delivery. In Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy (pp. 167-182). Academic Press, 2018.
18. Seo, Y. E., Bu, T., & Saltzman, W. M. Nanomaterials for convection-enhanced delivery of agents to treat brain tumors. Current opinion in biomedical engineering, 4, 1-12, 2017.
19. Zhan, W., & Wang, C. H. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. Journal of Controlled Release, 285, 212-229, 2018.
20. Zhan, W., Arifin, D. Y., Lee, T. K., & Wang, C. H. Mathematical modelling of convection enhanced delivery of carmustine and paclitaxel for brain tumour therapy. Pharmaceutical research, 34(4), 860-873, 2017.
21. Zhan, W., Rodriguez y Baena, F., & Dini, D. Effect of tissue permeability and drug diffusion anisotropy on convection-enhanced delivery. Drug delivery, 26(1), 773-781, 2019.
22. Xi, G., Robinson, E., Mania-Farnell, B., Vanin, E. F., Shim, K. W., Takao, T., ... & Tomita, T. Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomedicine: Nanotechnology, Biology and Medicine, 10(2), 381-391, 2014.
23. Yin, D., Forsayeth, J., & Bankiewicz, K. S. Optimized cannula design and placement for convection-enhanced delivery in rat striatum. Journal of neuroscience methods, 187(1), 46-51, 2010.
24. Seunguk, O. H., Odland, R., Wilson, S. R., Kroeger, K. M., Liu, C., Lowenstein, P. R., ... & Ohlfest, J. R. Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter. Journal of neurosurgery, 107(3), 568-577, 2007.
25. Krauze, M. T., Saito, R., Noble, C., Tamas, M., Bringas, J., Park, J. W., ... & Bankiewicz, K. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. Journal of neurosurgery, 103(5), 923-929, 2005.
26. Debinski, W., & Tatter, S. B. Convection-enhanced delivery for the treatment of brain tumors. Expert review of neurotherapeutics, 9(10), 1519-1527, 2009.
27. Olson, J. J., Zhang, Z., Dillehay, D., & Stubbs, J. Assessment of a balloon-tipped catheter modified for intracerebral convection-enhanced delivery. Journal of neuro-oncology, 89(2), 159-168, 2008.
28. Yin, D., Forsayeth, J., & Bankiewicz, K. S. Optimized cannula design and placement for convection-enhanced delivery in rat striatum. Journal of neuroscience methods, 187(1), 46-51, 2010.
29. Lewis, O., Woolley, M., Johnson, D. E., Fletcher, J., Fenech, J., Pietrzyk, M. W., ... & Gill, S. S. Maximising coverage of brain structures using controlled reflux, convection-enhanced delivery and the recessed step catheter. Journal of neuroscience methods, 308, 337-345, 2018.
30. Naidoo, J., Fiandaca, M., Lonser, R. R., & Bankiewicz, K. Convection-Enhanced Drug Delivery in the Central Nervous System. In Nervous System Drug Delivery (pp. 335-350). Academic Press, 2019.
31. Lueshen, E., Tangen, K., Mehta, A. I., & Linninger, A. Backflow-free catheters for efficient and safe convection-enhanced delivery of therapeutics. Medical engineering & physics, 45, 15-24, 2017.
32. Gill, T., Barua, N. U., Woolley, M., Bienemann, A. S., Johnson, D. E., Murray, G., ... & Moore, P. In vitro and in vivo testing of a novel recessed-step catheter for reflux-free convection-enhanced drug delivery to the brain. Journal of neuroscience methods, 219(1), 1-9, 2013.
33. Chakroun, R. W., Zhang, P., Lin, R., Schiapparelli, P., Quinones‐Hinojosa, A., & Cui, H. Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10(1), e1479, 2018.
34. Cho, K., Wang, X. U., Nie, S., & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 14(5), 1310-1316, 2008.
35. Liu, Z., Jiao, Y., Wang, Y., Zhou, C., & Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Advanced drug delivery reviews, 60(15), 1650-1662, 2008.
36. Saallah, S., & Lenggoro, I. W. Nanoparticles carrying biological molecules: Recent advances and applications. KONA Powder and Particle Journal, 35, 89-111, 2018.
37. Prasad, M., Lambe, U. P., Brar, B., Shah, I., Manimegalai, J., Ranjan, K., ... & Iqbal, H. M. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomedicine & Pharmacotherapy, 97, 1521-1537, 2018.
38. Wilczewska, A. Z., Niemirowicz, K., Markiewicz, K. H., & Car, H. Nanoparticles as drug delivery systems. Pharmacological reports, 64(5), 1020-1037, 2012.
Owens, G. J., Singh, R. K., Foroutan, F., Alqaysi, M., Han, C. M., Mahapatra, C., ... & Knowles, J. C. Sol–gel based materials for biomedical applications. Progress in Materials Science, 77, 1-79, 2016.
39. Popović, Z., Liu, W., Chauhan, V. P., Lee, J., Wong, C., Greytak, A. B., ... & Bawendi, M. G. A nanoparticle size series for in vivo fluorescence imaging. Angewandte Chemie International Edition, 49(46), 8649-8652, 2010.
40. McNeil, S. E. Nanotechnology for the biologist. Journal of leukocyte biology, 78(3), 585-594, 2005.
41. Master, A. M., & Sen Gupta, A. EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine, 7(12), 1895-1906, 2012.
42. Shen, Z., Nieh, M. P., & Li, Y. Decorating nanoparticle surface for targeted drug delivery: opportunities and challenges. Polymers, 8(3), 83, 2016.
43. Yoo, J., Park, C., Yi, G., Lee, D., & Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers, 11(5), 640, 2019.
44. Nasrabadi, H. T., Abbasi, E., Davaran, S., Kouhi, M., & Akbarzadeh, A. Bimetallic nanoparticles: preparation, properties, and biomedical applications. Artificial cells, nanomedicine, and biotechnology, 44(1), 376-380, 2016.
45. Moreau, L. M., Schurman, C. A., Kewalramani, S., Shahjamali, M. M., Mirkin, C. A., & Bedzyk, M. J. How Ag nanospheres are transformed into AgAu nanocages. Journal of the American Chemical Society, 139(35), 12291-12298, 2017.
46. Gilroy, K. D., Ruditskiy, A., Peng, H. C., Qin, D., & Xia, Y. Bimetallic nanocrystals: syntheses, properties, and applications. Chemical reviews, 116(18), 10414-10472, 2016.
47. Wei, X., Fan, Q., Liu, H., Bai, Y., Zhang, L., Zheng, H., ... & Gao, C. Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering. Nanoscale, 8(34), 15689-15695, 2016.
48. Xu, Y., Liu, H., & Jiang, T. Reliable quantitative SERS analysis mediated by Ag nano coix seeds with internal standard molecule. Journal of Nanoparticle Research, 21(5), 107, 2019.
49. Kim, W., Lee, J. C., Lee, G. J., Park, H. K., Lee, A., & Choi, S. Low-cost label-free biosensing bimetallic cellulose strip with SILAR-synthesized silver core–gold shell nanoparticle structures. Analytical chemistry, 89(12), 6448-6454, 2017.
50. Sotiriou, G. A., Etterlin, G. D., Spyrogianni, A., Krumeich, F., Leroux, J. C., & Pratsinis, S. E. Plasmonic biocompatible silver–gold alloyed nanoparticles. Chemical Communications, 50(88), 13559-13562, 2014.
51. Liu, H., Liu, T., Zhang, L., Han, L., Gao, C., & Yin, Y. Etching‐Free Epitaxial Growth of Gold on Silver Nanostructures for High Chemical Stability and Plasmonic Activity. Advanced Functional Materials, 25(34), 5435-5443, 2015.
52. Lee, K. E., Hesketh, A. V., & Kelly, T. L. Chemical stability and degradation mechanisms of triangular Ag, Ag@ Au, and Au nanoprisms. Physical Chemistry Chemical Physics, 16(24), 12407-12414, 2014.
53. Daniel, J. R., McCarthy, L. A., Ringe, E., & Boudreau, D. Enhanced control of plasmonic properties of silver–gold hollow nanoparticles via a reduction-assisted galvanic replacement approach. RSC advances, 9(1), 389-396, 2019.
54. Krishnan, S. K., Esparza, R., Flores-Ruiz, F. J., Padilla-Ortega, E., Luna-Bárcenas, G., Sanchez, I. C., & Pal, U. Seed-mediated growth of Ag@ Au nanodisks with improved chemical stability and surface-enhanced Raman scattering. ACS omega, 3(10), 12600-12608, 2018.
55. Shankar, C., Dao, A. T., Singh, P., Higashimine, K., Mott, D. M., & Maenosono, S. Chemical stabilization of gold coated by silver core–shell nanoparticles via electron transfer. Nanotechnology, 23(24), 245704, 2012.
56. Espinosa, A., Curcio, A., Cabana, S., Radtke, G., Bugnet, M., Kolosnjaj-Tabi, J., ... & Abou-Hassan, A. Intracellular biodegradation of Ag nanoparticles, storage in ferritin, and protection by a Au shell for enhanced photothermal therapy. ACS nano, 12(7), 6523-6535, 2018.
57. Park, E. J., Yi, J., Kim, Y., Choi, K., & Park, K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in vitro, 24(3), 872-878, 2010.
58. Zhang, T., Wang, L., Chen, Q., & Chen, C. Cytotoxic potential of silver nanoparticles. Yonsei medical journal, 55(2), 283-291, 2014.
59. Lai, Y., Dong, L., Zhou, H., Yan, B., Chen, Y., Cai, Y., & Liu, J. Coexposed nanoparticulate Ag alleviates the acute toxicity induced by ionic Ag+ in vivo. Science of The Total Environment, 138050, 2020.
60. Agnihotri, S., Mukherji, S., & Mukherji, S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5(16), 7328-7340, 2013.
61. Fahmy, H. M., Mosleh, A. M., Elghany, A. A., Shams-Eldin, E., Serea, E. S. A., Ali, S. A., & Shalan, A. E. Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC advances, 9(35), 20118-20136, 2019.
62. Shankar, C., Dao, A. T., Singh, P., Higashimine, K., Mott, D. M., & Maenosono, S. Chemical stabilization of gold coated by silver core–shell nanoparticles via electron transfer. Nanotechnology, 23(24), 245704, 2012.
63. Levard, C., Hotze, E. M., Colman, B. P., Dale, A. L., Truong, L., Yang, X. Y., ... & Bernhardt, E. S. Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environmental science & technology, 47(23), 13440-13448, 2013.
64. Jain, P. K., Huang, X., El-Sayed, I. H., & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of chemical research, 41(12), 1578-1586, 2008.
65. Jaque, D., Maestro, L. M., Del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., ... & Sole, J. G. Nanoparticles for photothermal therapies. nanoscale, 6(16), 9494-9530, 2014.
66. Yang, G., Liu, J., Wu, Y., Feng, L., & Liu, Z. Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coordination Chemistry Reviews, 320, 100-117, 2016.
67. Daniel, J. R., McCarthy, L. A., Ringe, E., & Boudreau, D. Enhanced control of plasmonic properties of silver–gold hollow nanoparticles via a reduction-assisted galvanic replacement approach. RSC advances, 9(1), 389-396, 2019.
68. Mohan, S., & Subramanian, B. Surface enhanced raman scattering studies of silver-gold normal and inverted core-shell nanostructures on their efficiency of detecting molecules. Procedia Engineering, 92, 19-25, 2014.
69. Toshima, N., & Yonezawa, T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New Journal of Chemistry, 22(11), 1179-1201, 1998.
70. Sun, L., Yin, Y., Lv, P., Su, W., & Zhang, L. Green controllable synthesis of Au–Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity. RSC advances, 8(8), 3964-3973, 2018.
71. Dutta, D., Sahoo, A. K., Chattopadhyay, A., & Ghosh, S. S. Bimetallic silver nanoparticle–gold nanocluster embedded composite nanoparticles for cancer theranostics. Journal of Materials Chemistry B, 4(4), 793-800, 2016.
72. Chugh, H., Sood, D., Chandra, I., Tomar, V., Dhawan, G., & Chandra, R. Role of gold and silver nanoparticles in cancer nano-medicine. Artificial cells, nanomedicine, and biotechnology, 46(sup1), 1210-1220, 2018.
73. Li, Y., Lu, W., Huang, Q., Li, C., & Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine, 5(8), 1161-1171, 2010.
74. Feng, W., Nie, W., Cheng, Y., Zhou, X., Chen, L., Qiu, K., ... & He, C. In vitro and in vivo toxicity studies of copper sulfide nanoplates for potential photothermal applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(4), 901-912, 2015.
75. Goel, S., Chen, F., & Cai, W. Synthesis and biomedical applications of sulfide nanoparticles: from sensors to theranostics. Small, 10(4), 631-645, 2014.
76. Wang, D., Dong, H., Li, M., Cao, Y., Yang, F., Zhang, K., ... & Zhang, X. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS nano, 12(6), 5241-5252, 2018.
77. Córdova-Castro, R. M., Casavola, M., van Schilfgaarde, M., Krasavin, A. V., Green, M. A., Richards, D., & Zayats, A. V. Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersion. ACS nano, 13(6), 6550-6560, 2019.
78. Chen, F., Hong, H., Goel, S., Graves, S. A., Orbay, H., Ehlerding, E. B., ... & Cai, W. In vivo tumor vasculature targeting of CuS@ MSN based theranostic nanomedicine. ACS nano, 9(4), 3926-3934, 2015.
79. Xie, Y. Q., Wei, L., & Tang, L. Immunoengineering with biomaterials for enhanced cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10(4), e1506, 2018.
80. Fan, Y., & Moon, J. J. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines, 3(3), 662-685, 2015.
81. Mellman, I., Coukos, G., & Dranoff, G. Cancer immunotherapy comes of age. Nature, 480(7378), 480-489, 2011.
82. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A., & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Reviews Cancer, 8(4), 299-308, 2008.
83. Lesterhuis, W. J., Haanen, J. B., & Punt, C. J. Cancer immunotherapy–revisited. Nature reviews Drug discovery, 10(8), 591-600, 2011.
84. Couzin-Frankel, J. Cancer immunotherapy, 2013.
85. Louveau, A., Smirnov, I., Keyes, T. J., Eccles, J. D., Rouhani, S. J., Peske, J. D., ... & Harris, T. H. Structural and functional features of central nervous system lymphatic vessels. Nature, 523(7560), 337-341, 2015.
86. Jackson, C. M., Lim, M., & Drake, C. G. Immunotherapy for brain cancer: recent progress and future promise. Clinical Cancer Research, 20(14), 3651-3659, 2014.
87. Aspelund, A., Antila, S., Proulx, S. T., Karlsen, T. V., Karaman, S., Detmar, M., ... & Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. Journal of Experimental Medicine, 212(7), 991-999, 2015.
88. Jackson, C. M., Choi, J., & Lim, M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nature immunology, 20(9), 1100-1109, 2019.
89. Dănăilă, L., Ghyka, G., & Ursaciuc, C. Interleukin-2 (IL-2) in the treatment of malignant brain tumors (glioblastomas). Romanian journal of neurology and psychiatry= Revue roumaine de neurologie et psychiatrie, 31(3-4), 195, 1993.
90. Dunn‐Pirio, A. M., & Vlahovic, G. Immunotherapy approaches in the treatment of malignant brain tumors. Cancer, 123(5), 734-750, 2017.
91. Pule, M. A., Savoldo, B., Myers, G. D., Rossig, C., Russell, H. V., Dotti, G., ... & Yvon, E. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature medicine, 14(11), 1264-1270, 2008.
92. Till, B. G., Jensen, M. C., Wang, J., Qian, X., Gopal, A. K., Maloney, D. G., ... & Raubitschek, A. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood, The Journal of the American Society of Hematology, 119(17), 3940-3950, 2012.
93. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., & June, C. H. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N engl j Med, 365, 725-733, 2011.
94. Miao, H., Choi, B. D., Suryadevara, C. M., Sanchez-Perez, L., Yang, S., De Leon, G., ... & Archer, G. E. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PloS one, 9(4), e94281, 2014.
95. Chen, Q., Xu, L., Liang, C., Wang, C., Peng, R., & Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature communications, 7(1), 1-13, 2016.
96. Sun, C., Lee, J. S., & Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews, 60(11), 1252-1265, 2008.
97. Revia, R. A., & Zhang, M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Materials Today, 19(3), 157-168, 2016.
98. Chiang, C. S., Lin, Y. J., Lee, R., Lai, Y. H., Cheng, H. W., Hsieh, C. H., ... & Chen, S. Y. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nature nanotechnology, 13(8), 746-754, 2018.
99. Gobbo, O. L., Sjaastad, K., Radomski, M. W., Volkov, Y., & Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. Theranostics, 5(11), 1249, 2015.
100. Kesharwani, P., Jain, K., & Jain, N. K. Dendrimer as nanocarrier for drug delivery. Progress in Polymer Science, 39(2), 268-307, 2014.
101. Xie, J., Zhao, R., Gu, S., Dong, H., Wang, J., Lu, Y., ... & Shao, J. The architecture and biological function of dual antibody-coated dendrimers: enhanced control of circulating tumor cells and their hetero-adhesion to endothelial cells for metastasis prevention. Theranostics, 4(12), 1250, 2014.
102. Liu, C., Shao, N., Wang, Y., & Cheng, Y. Clustering small dendrimers into nanoaggregates for efficient DNA and siRNA delivery with minimal toxicity. Advanced Healthcare Materials, 5(5), 584-592, 2016.
103. Aulenta, F., Hayes, W., & Rannard, S. Dendrimers: a new class of nanoscopic containers and delivery devices. European Polymer Journal, 39(9), 1741-1771, 2003.
104. Devarakonda, B., Hill, R. A., Liebenberg, W., Brits, M., & de Villiers, M. M. Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. International journal of pharmaceutics, 304(1-2), 193-209, 2005.
105. Bharali, D. J., Khalil, M., Gurbuz, M., Simone, T. M., & Mousa, S. A. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. International journal of nanomedicine, 4, 1, 2009.
106. Kono, K. Dendrimer-based bionanomaterials produced by surface modification, assembly and hybrid formation. Polymer journal, 44(6), 531-540, 2012.
107. Li, H. J., Du, J. Z., Liu, J., Du, X. J., Shen, S., Zhu, Y. H., ... & Wang, J. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS nano, 10(7), 6753-6761, 2016.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具膜破壞功能之高分子/硫化銅奈米複合微胞應用於腦瘤穿透及光熱治療
2. 具粒線體標靶功能之三苯基磷修飾金奈米顆粒結合磁電效應用於深部腦腫瘤的治療
3. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
4. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
5. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
6. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
7. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
8. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
9. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
10. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
11. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
12. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
13. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
14. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
15. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
 
* *