帳號:guest(3.137.210.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐聖昀
作者(外文):Hsu, Sheng-Yun.
論文名稱(中文):探討腫瘤相關巨噬細胞分泌之外泌體對於星狀膠質瘤的影響
論文名稱(外文):Effect of the tumor-associated macrophage-derived exosomes on astrocytoma
指導教授(中文):江啟勳
指導教授(外文):Chiang, Chi-Shiun.
口試委員(中文):胡尚秀
王述綺
口試委員(外文):Hu, Shang-Hsiu.
Wang, Shu-Chi.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:107012502
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:77
中文關鍵詞:細胞外囊泡外泌體腫瘤相關巨噬細胞星狀膠質瘤
外文關鍵詞:Extracellur VesclesExosomeTumor-associated macrophageAstrocytoma
相關次數:
  • 推薦推薦:0
  • 點閱點閱:655
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
膠質瘤是致命的癌症,由於其異質性腫瘤微環境而具有很高的復發能力。細胞外囊泡(Extracellur Vescles)在腫瘤微環境扮演的角色起著越來越重要,尤其是外泌體(Exosome)做為細胞間通信的媒介是最為常見的細胞外囊泡。我們實驗室之前的研究發現老鼠星形細胞瘤細胞ALTS1C1與BV2細胞或骨髓來源的M2巨噬細胞能相互作用,例如化學抗性和集落形成。因此,我們專注於研究兩種腫瘤相關巨噬細胞的外泌體對於ALTS1C1細胞的作用。我們使用沉澱法的方式純化外泌體,並通過奈米粒子跟蹤分析儀,西方墨點法和穿透式電子顯微鏡來確認外泌體的特性。我們的結果發現Raw264.7和BV2細胞所分泌的外泌體都可以被ALTS1C1細胞攝取,但只有BV2外泌體對ALTS1C1細胞具有劑量反應,包括細胞形態變化,誘導細胞增殖和遷移能力以及改變ALTS1C1細胞中DEDD和VEGFa的表現水平。此外,BV2細胞所分泌的外來體可增加腫瘤血管的功能並減少缺氧區域,但在肌肉內模型腫瘤中卻意外地延遲了腫瘤的生長,並增加了胞毒性T細胞(CD8+)的比例。
Glioma is deadly cancer and has a high recurrence ability due to its heterogeneous tumor microenvironment (TME). Extracellular vesicles (EVs) play a more and more important role in TME. The exosome, which is the most common EVs, can act as a cargo between cell to cell communication. Previous studies of our laboratory have found that ALTS1C1, a murine astrocytoma cell line, had some interactions with BV2 or bone marrow-derived M2 macrophage, such as chemoresistant and colony formation. Thus, we focused on comparing the response of ALTS1C1 in interacting with two types of tumor-associated macrophage-derived exosomes. We used precipitation based protocols to purify exosomes and checked the characterization of exosomes by Nanoparticle Tracking Analyzer, Western blot, and Transmission Electron Microscopy. Our results showed that both Raw264.7 and BV2 cell-derived exosomes could be uptaken by ALTS1C1, but only BV2 exosomes had a dose-dependent effect on ALTS1C1 cell, including cell morphology change, cell proliferation ability, and migration ability as well as the change of the expression level of DEDD and VEGFa in vitro. Moreover, BV2 derived exosomes could increase the tumor vessels function and reduce the hypoxia area, but un-expectely delayed tumor growth in the intramuscular model tumor associated the increase of CD8+ T cell percentage.
致謝 ........................................................................................................................................................1
中文摘要 ................................................................................................................................................2
Abstract..................................................................................................................................................3
Chapter1: Introduction ........................................................................................................................7
1.1 Glioma..........................................................................................................................................7
1.2 Tumor microenvironment..........................................................................................................7
1.3 Extracellular vesicles ..................................................................................................................8
1.4 Tumor-associated macrophages ................................................................................................9
1.5 Aim.............................................................................................................................................10
Chapter2: Materials and Methods ....................................................................................................11
2.1 Cell line cultures ........................................................................................................................11
2.2 Exosome isolation ......................................................................................................................11
2.3 Exosome characterization..........................................................................................................12
2.3-1 Nanoparticle Tracking Analyzer (NTA) ............................................................................12
2.3-2 Exosomal protein extraction and BCA assay ....................................................................13
2.3-3 Western blot ........................................................................................................................13
2.3-4 Transmission Electron Microscopy sample prepare .........................................................15
2.4 In vitro study...............................................................................................................................16
2.4-1 Fast Dio labeled exosome...................................................................................................16
2.4-2 Immunofluorescence staining............................................................................................16
2.4-3 MTT assay...........................................................................................................................17
2.4-4 Cell growth curve and cell cycle analyze ...........................................................................18
2.4-5 Wound healing assay..........................................................................................................18
2.4-6 Total RNA extraction and real-time polymerase chain reaction (RT-PCR) ....................19
2.5 Animal experiments ...................................................................................................................20
2.5-1 Mice.....................................................................................................................................20
2.5-2 Intramuscular tumor implantation ....................................................................................21

2.5-3 Tumor collection.................................................................................................................21
2.5-4 Flow cytometry analysis......................................................................................................22
2.5-5 Immunohistochemistry analysis.........................................................................................23
2.6 Statistics......................................................................................................................................24
Chapter3: Result .................................................................................................................................25
3.1 Exosome characterization ........................................................................................................25
3.2 In vitro test .................................................................................................................................26
3.2-1 Exosomes purified from ALTS1C1 or macrophages can be uptaken by ALTS1C1, BV2, and RAW264.7...................................................................................................................26
3.2-2 BV2 exosomes have dose-response to ALTS1C1 ............................................................27
3.2-3 ALTS1C1 cell morphology can be changed by BV2 exosome .......................................29
3.2-4 BV2 Exosome can induce ALTS1C1 Cell proliferation and migration ability ............29
3.2-5 BV2 Exosome can induce ALTS1C1 VEGFa and reduce DEDD expression level. .....30
3.3 In vivo test ..................................................................................................................................31
3.3-1 BV2 exosome can delay tumor growth in I.M. model ....................................................31
3.3-2 BV2 exosome reduce hypoxia area and increase the ratio of the functional vessel .....33
Chapter4: Discussion..........................................................................................................................34
4.1 Brief introduction of what important results found in this study. .......................................34
4.2 The size and amount of exosome isolation depended on the isolation and quantitative methods. ..........................................................................................................................................34
4.3 ALTS1C1 used different pathways to uptake BV2 versus Raw264.7 exosomes. ................36
4.4 BV2 exosome-mediated ALTS1C1 proliferation and migration may be associated with miR24-3p..........................................................................................................................................38
4.5 BV2 exosome could cause tumor vessel normalization and delay tumor growth in an intra-muscular tumor model. ..................................................................................................................39
4.6 Summary...................................................................................................................................40
4.7 Future plan ................................................................................................................................41
Chapter5: Figures ...............................................................................................................................42
Figure1 .........................................................................................................................................42

Figure2 .........................................................................................................................................47
Figure3 .........................................................................................................................................49
Figure4 .........................................................................................................................................51
Figure5 .........................................................................................................................................53
Figure6 .........................................................................................................................................55
Figure7 .........................................................................................................................................57
Figure8 .........................................................................................................................................58
Figure9 .........................................................................................................................................60
Figure10 .......................................................................................................................................63
Figure11 .......................................................................................................................................65
Figure12 .......................................................................................................................................67
Supporting data 1........................................................................................................................70
Supporting data 2........................................................................................................................71
Chapter6: References .........................................................................................................................73
1. Ostrom, Q.T., et al., CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro-Oncology, 2019. 21(Supplement_5): p. v1-v100.
2. Wesseling, P., J.M. Kros, and J.W.M. Jeuken, The pathological diagnosis of diffuse gliomas: towards a smart synthesis of microscopic and molecular information in a multidisciplinary context. Diagnostic Histopathology, 2011. 17(11): p. 486-494.
3. Louis, D.N., et al., The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 2007. 114(2): p. 97-109.
4. Wong, E.T., et al., Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 1999. 17(8): p. 2572-2578.
5. Alsibai, K.D. and D. Meseure, Significance of Tumor Microenvironment Scoring and Immune Biomarkers in Patient Stratification and Cancer Outcomes, in Histopathology - An Update. 2018.
6. Whiteside, T.L., The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008. 27(45): p. 5904-12.
7. Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013. 19(11): p. 1423-37.
8. Wang, M., et al., Role of tumor microenvironment in tumorigenesis. J Cancer, 2017. 8(5): p. 761-773.
9. Hu, C., et al., Exosome-related tumor microenvironment. J Cancer, 2018. 9(17): p. 3084-3092.
10. Webb, B.A., et al., Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer, 2011. 11(9): p. 671-7.
11. Casazza, A., et al., Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene, 2014. 33(14): p. 1743-54.
12. Libutti, S.K., L. Tamarkin, and N. Nilubol, Targeting the invincible barrier for drug delivery in solid cancers: interstitial fluid pressure. Oncotarget; Vol 9, No 87, 2018.
13. Wu, K., et al., Extracellular vesicles as emerging targets in cancer: Recent development from bench to bedside. Biochim Biophys Acta Rev Cancer, 2017. 1868(2): p. 538-563.
14. Ståhl, A.L., et al., Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol, 2019. 34(1): p. 11-30.
15. Meldolesi, J., Exosomes and Ectosomes in Intercellular Communication. Curr Biol, 2018. 28(8): p. R435-R444.
16. Théry, C., M. Ostrowski, and E. Segura, Membrane vesicles as conveyors of immune responses. Nat Rev Immunol, 2009. 9(8): p. 581-93.
17. Christ, L., et al., Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Trends Biochem Sci, 2017. 42(1): p. 42-56.
18. Zheng, H., et al., The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. J Exp Clin Cancer Res, 2018. 37(1): p. 226.
19. Jayaseelan, V.P., Emerging role of exosomes as promising diagnostic tool for cancer. Cancer Gene Therapy, 2020. 27(6): p. 395-398.
20. Luan, X., et al., Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacologica Sinica, 2017. 38(6): p. 754-763.
21. Devhare, P.B. and R.B. Ray, A novel role of exosomes in the vaccination approach. Ann Transl Med, 2017. 5(1): p. 23.
22. Webber, J., et al., Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res, 2010. 70(23): p. 9621-30.
23. Xu, R., et al., Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol, 2018. 15(10): p. 617-638.
24. Liu, C., et al., Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. Journal of immunology (Baltimore, Md. : 1950), 2006. 176(3): p. 1375-1385.
25. Peinado, H., et al., Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature medicine, 2012. 18(6): p. 883-891.
26. Li, B., et al., Tumor-derived exosomal HMGB1 promotes esophageal squamous cell carcinoma progression through inducing PD1+ TAM expansion. Oncogenesis, 2019. 8(3): p. 17.
27. Jeannin, P., et al., The roles of CSFs on the functional polarization of tumor-associated macrophages. Febs j, 2018. 285(4): p. 680-699.
28. Sica, A., et al., Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer, 2006. 42(6): p. 717-27.
29. Chen, Y., et al., Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci, 2019. 26(1): p. 78.
30. Baig, M.S., et al., Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res, 2020. 69(5): p. 435-451.
31. Gabrusiewicz, K., et al., Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology, 2018. 7(4): p. e1412909-e1412909.
32. Lan, J., et al., M2 Macrophage-Derived Exosomes Promote Cell Migration and Invasion in Colon Cancer. Cancer Research, 2019. 79(1): p. 146.
33. Wang, S.C., et al., Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest, 2012. 92(1): p. 151-62.
34. Blasi, E., et al., Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol, 1990. 27(2-3): p. 229-37.
35. Wu, Y., W. Deng, and D.J. Klinke, 2nd, Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst, 2015. 140(19): p. 6631-42.
36. Smith, P.K., et al., Measurement of protein using bicinchoninic acid. Anal Biochem, 1985. 150(1): p. 76-85.
37. Jung, M.K. and J.Y. Mun, Sample Preparation and Imaging of Exosomes by Transmission Electron Microscopy. J Vis Exp, 2018(131).
38. Thiersch, M., et al., Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection. BMC Genomics, 2008. 9: p. 73.
39. Coumans, F.A.W., et al., Methodological Guidelines to Study Extracellular Vesicles. Circ Res, 2017. 120(10): p. 1632-1648.
40. Soares Martins, T., et al., Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One, 2018. 13(6): p. e0198820.
41. Baranyai, T., et al., Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLoS One, 2015. 10(12): p. e0145686.
42. Gabrusiewicz, K., et al., Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology, 2018. 7(4): p. e1412909.
43. Dix, C.L., et al., The Role of Mitotic Cell-Substrate Adhesion Re-modeling in Animal Cell Division. Dev Cell, 2018. 45(1): p. 132-145 e3.
44. Liu, Y.J., et al., Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell, 2015. 160(4): p. 659-672.
45. Yu, G., Z. Jia, and Z. Dou, miR-24-3p regulates bladder cancer cell proliferation, migration, invasion and autophagy by targeting DEDD. Oncol Rep, 2017. 37(2): p. 1123-1131.
46. Hua, F., et al., [DEDD decreases Smad3 activity, promotes tumor cell apoptosis and inhibits proliferation]. Yao Xue Xue Bao, 2013. 48(5): p. 680-5.
47. Zeng, F.C., et al., Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma. Onco Targets Ther, 2016. 9: p. 2131-41.
48. Oommen, S., S.K. Gupta, and N.E. Vlahakis, Vascular endothelial growth factor A (VEGF-A) induces endothelial and cancer cell migration through direct binding to integrin {alpha}9{beta}1: identification of a specific {alpha}9{beta}1 binding site. J Biol Chem, 2011. 286(2): p. 1083-92.
49. Rosenberger, L., et al., Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma. Scientific Reports, 2019. 9(1): p. 663.
50. Xu, W., et al., Exosomes from Microglia Attenuate Photoreceptor Injury and Neovascularization in an Animal Model of Retinopathy of Prematurity. Mol Ther Nucleic Acids, 2019. 16: p. 778-790.
51. Ferguson, S., et al., The Phenotypic Effects of Exosomes Secreted from Distinct Cellular Sources: a Comparative Study Based on miRNA Composition. AAPS J, 2018. 20(4): p. 67.
52. Patel, G.K., et al., Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep, 2019. 9(1): p. 5335.
53. McKelvey, K.J., et al., Exosomes: Mechanisms of Uptake. J Circ Biomark, 2015. 4: p. 7.
54. Schneider, P., et al., Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med, 1998. 187(8): p. 1205-13.
55. Del Conde, I., et al., Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 2005. 106(5): p. 1604-11.
56. Feng, D., et al., Cellular internalization of exosomes occurs through phagocytosis. Traffic, 2010. 11(5): p. 675-87.
57. Tian, T., et al., Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem, 2014. 289(32): p. 22258-67.
58. Manjunath, Y., et al., Tumor-Cell-Macrophage Fusion Cells as Liquid Biomarkers and Tumor Enhancers in Cancer. Int J Mol Sci, 2020. 21(5).
59. Isenberg, G., et al., Membrane fusion induced by the major lipid-binding domain of the cytoskeletal protein talin. Biochem Biophys Res Commun, 2002. 295(3): p. 636-43.
60. Gonda, A., et al., Internalization of Exosomes through Receptor-Mediated Endocytosis. Mol Cancer Res, 2019. 17(2): p. 337-347.
61. Dai, D., et al., miR24 regulates angiogenesis in gliomas. Mol Med Rep, 2018. 18(1): p. 358-368.
62. Bautch, V.L., VEGF-directed blood vessel patterning: from cells to organism. Cold Spring Harb Perspect Med, 2012. 2(9): p. a006452.
63. Maj, E., D. Papiernik, and J. Wietrzyk, Antiangiogenic cancer treatment: The great discovery and greater complexity (Review). Int J Oncol, 2016. 49(5): p. 1773-1784.
64. Sitohy, B., J.A. Nagy, and H.F. Dvorak, Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res, 2012. 72(8): p. 1909-14.
65. Kim, K.J., et al., Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature, 1993. 362(6423): p. 841-4.
66. Marchetti, M., et al., MicroRNA-24-3p Targets Notch and Other Vascular Morphogens to Regulate Post-ischemic Microvascular Responses in Limb Muscles. Int J Mol Sci, 2020. 21(5).



 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *