|
1. Ostrom, Q.T., et al., CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro-Oncology, 2019. 21(Supplement_5): p. v1-v100. 2. Wesseling, P., J.M. Kros, and J.W.M. Jeuken, The pathological diagnosis of diffuse gliomas: towards a smart synthesis of microscopic and molecular information in a multidisciplinary context. Diagnostic Histopathology, 2011. 17(11): p. 486-494. 3. Louis, D.N., et al., The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 2007. 114(2): p. 97-109. 4. Wong, E.T., et al., Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 1999. 17(8): p. 2572-2578. 5. Alsibai, K.D. and D. Meseure, Significance of Tumor Microenvironment Scoring and Immune Biomarkers in Patient Stratification and Cancer Outcomes, in Histopathology - An Update. 2018. 6. Whiteside, T.L., The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008. 27(45): p. 5904-12. 7. Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013. 19(11): p. 1423-37. 8. Wang, M., et al., Role of tumor microenvironment in tumorigenesis. J Cancer, 2017. 8(5): p. 761-773. 9. Hu, C., et al., Exosome-related tumor microenvironment. J Cancer, 2018. 9(17): p. 3084-3092. 10. Webb, B.A., et al., Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer, 2011. 11(9): p. 671-7. 11. Casazza, A., et al., Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene, 2014. 33(14): p. 1743-54. 12. Libutti, S.K., L. Tamarkin, and N. Nilubol, Targeting the invincible barrier for drug delivery in solid cancers: interstitial fluid pressure. Oncotarget; Vol 9, No 87, 2018. 13. Wu, K., et al., Extracellular vesicles as emerging targets in cancer: Recent development from bench to bedside. Biochim Biophys Acta Rev Cancer, 2017. 1868(2): p. 538-563. 14. Ståhl, A.L., et al., Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol, 2019. 34(1): p. 11-30. 15. Meldolesi, J., Exosomes and Ectosomes in Intercellular Communication. Curr Biol, 2018. 28(8): p. R435-R444. 16. Théry, C., M. Ostrowski, and E. Segura, Membrane vesicles as conveyors of immune responses. Nat Rev Immunol, 2009. 9(8): p. 581-93. 17. Christ, L., et al., Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Trends Biochem Sci, 2017. 42(1): p. 42-56. 18. Zheng, H., et al., The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. J Exp Clin Cancer Res, 2018. 37(1): p. 226. 19. Jayaseelan, V.P., Emerging role of exosomes as promising diagnostic tool for cancer. Cancer Gene Therapy, 2020. 27(6): p. 395-398. 20. Luan, X., et al., Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacologica Sinica, 2017. 38(6): p. 754-763. 21. Devhare, P.B. and R.B. Ray, A novel role of exosomes in the vaccination approach. Ann Transl Med, 2017. 5(1): p. 23. 22. Webber, J., et al., Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res, 2010. 70(23): p. 9621-30. 23. Xu, R., et al., Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol, 2018. 15(10): p. 617-638. 24. Liu, C., et al., Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. Journal of immunology (Baltimore, Md. : 1950), 2006. 176(3): p. 1375-1385. 25. Peinado, H., et al., Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature medicine, 2012. 18(6): p. 883-891. 26. Li, B., et al., Tumor-derived exosomal HMGB1 promotes esophageal squamous cell carcinoma progression through inducing PD1+ TAM expansion. Oncogenesis, 2019. 8(3): p. 17. 27. Jeannin, P., et al., The roles of CSFs on the functional polarization of tumor-associated macrophages. Febs j, 2018. 285(4): p. 680-699. 28. Sica, A., et al., Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer, 2006. 42(6): p. 717-27. 29. Chen, Y., et al., Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci, 2019. 26(1): p. 78. 30. Baig, M.S., et al., Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res, 2020. 69(5): p. 435-451. 31. Gabrusiewicz, K., et al., Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology, 2018. 7(4): p. e1412909-e1412909. 32. Lan, J., et al., M2 Macrophage-Derived Exosomes Promote Cell Migration and Invasion in Colon Cancer. Cancer Research, 2019. 79(1): p. 146. 33. Wang, S.C., et al., Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest, 2012. 92(1): p. 151-62. 34. Blasi, E., et al., Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol, 1990. 27(2-3): p. 229-37. 35. Wu, Y., W. Deng, and D.J. Klinke, 2nd, Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst, 2015. 140(19): p. 6631-42. 36. Smith, P.K., et al., Measurement of protein using bicinchoninic acid. Anal Biochem, 1985. 150(1): p. 76-85. 37. Jung, M.K. and J.Y. Mun, Sample Preparation and Imaging of Exosomes by Transmission Electron Microscopy. J Vis Exp, 2018(131). 38. Thiersch, M., et al., Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection. BMC Genomics, 2008. 9: p. 73. 39. Coumans, F.A.W., et al., Methodological Guidelines to Study Extracellular Vesicles. Circ Res, 2017. 120(10): p. 1632-1648. 40. Soares Martins, T., et al., Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One, 2018. 13(6): p. e0198820. 41. Baranyai, T., et al., Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLoS One, 2015. 10(12): p. e0145686. 42. Gabrusiewicz, K., et al., Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology, 2018. 7(4): p. e1412909. 43. Dix, C.L., et al., The Role of Mitotic Cell-Substrate Adhesion Re-modeling in Animal Cell Division. Dev Cell, 2018. 45(1): p. 132-145 e3. 44. Liu, Y.J., et al., Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell, 2015. 160(4): p. 659-672. 45. Yu, G., Z. Jia, and Z. Dou, miR-24-3p regulates bladder cancer cell proliferation, migration, invasion and autophagy by targeting DEDD. Oncol Rep, 2017. 37(2): p. 1123-1131. 46. Hua, F., et al., [DEDD decreases Smad3 activity, promotes tumor cell apoptosis and inhibits proliferation]. Yao Xue Xue Bao, 2013. 48(5): p. 680-5. 47. Zeng, F.C., et al., Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma. Onco Targets Ther, 2016. 9: p. 2131-41. 48. Oommen, S., S.K. Gupta, and N.E. Vlahakis, Vascular endothelial growth factor A (VEGF-A) induces endothelial and cancer cell migration through direct binding to integrin {alpha}9{beta}1: identification of a specific {alpha}9{beta}1 binding site. J Biol Chem, 2011. 286(2): p. 1083-92. 49. Rosenberger, L., et al., Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma. Scientific Reports, 2019. 9(1): p. 663. 50. Xu, W., et al., Exosomes from Microglia Attenuate Photoreceptor Injury and Neovascularization in an Animal Model of Retinopathy of Prematurity. Mol Ther Nucleic Acids, 2019. 16: p. 778-790. 51. Ferguson, S., et al., The Phenotypic Effects of Exosomes Secreted from Distinct Cellular Sources: a Comparative Study Based on miRNA Composition. AAPS J, 2018. 20(4): p. 67. 52. Patel, G.K., et al., Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep, 2019. 9(1): p. 5335. 53. McKelvey, K.J., et al., Exosomes: Mechanisms of Uptake. J Circ Biomark, 2015. 4: p. 7. 54. Schneider, P., et al., Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med, 1998. 187(8): p. 1205-13. 55. Del Conde, I., et al., Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 2005. 106(5): p. 1604-11. 56. Feng, D., et al., Cellular internalization of exosomes occurs through phagocytosis. Traffic, 2010. 11(5): p. 675-87. 57. Tian, T., et al., Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem, 2014. 289(32): p. 22258-67. 58. Manjunath, Y., et al., Tumor-Cell-Macrophage Fusion Cells as Liquid Biomarkers and Tumor Enhancers in Cancer. Int J Mol Sci, 2020. 21(5). 59. Isenberg, G., et al., Membrane fusion induced by the major lipid-binding domain of the cytoskeletal protein talin. Biochem Biophys Res Commun, 2002. 295(3): p. 636-43. 60. Gonda, A., et al., Internalization of Exosomes through Receptor-Mediated Endocytosis. Mol Cancer Res, 2019. 17(2): p. 337-347. 61. Dai, D., et al., miR24 regulates angiogenesis in gliomas. Mol Med Rep, 2018. 18(1): p. 358-368. 62. Bautch, V.L., VEGF-directed blood vessel patterning: from cells to organism. Cold Spring Harb Perspect Med, 2012. 2(9): p. a006452. 63. Maj, E., D. Papiernik, and J. Wietrzyk, Antiangiogenic cancer treatment: The great discovery and greater complexity (Review). Int J Oncol, 2016. 49(5): p. 1773-1784. 64. Sitohy, B., J.A. Nagy, and H.F. Dvorak, Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res, 2012. 72(8): p. 1909-14. 65. Kim, K.J., et al., Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature, 1993. 362(6423): p. 841-4. 66. Marchetti, M., et al., MicroRNA-24-3p Targets Notch and Other Vascular Morphogens to Regulate Post-ischemic Microvascular Responses in Limb Muscles. Int J Mol Sci, 2020. 21(5).
|