帳號:guest(18.118.37.154)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張 瑋
作者(外文):Chang, Wei
論文名稱(中文):大腦功能性數據分析平台之驗證與其於果蠅嗅覺功能形成探索之研究
論文名稱(外文):Validation of Brain Functional Data Analysis Framework and Its Application in Investigating the Formation of Drosophila Olfactory Function
指導教授(中文):吳順吉
指導教授(外文):Wu, Shun-Chi
口試委員(中文):許靖涵
黃植懋
口試委員(外文):Hsu, Ching-Han
Huang, Chih-Mao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011569
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:雙光子顯微技術數據分析神經網絡腦功能區
外文關鍵詞:two-photon microscopydata analysisneural networkfunctional area
相關次數:
  • 推薦推薦:0
  • 點閱點閱:143
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
動物對外在環境的感知,及其所產生的反應行為,皆受到大腦神經網路的調控,故若要瞭解動物如何實現複雜行為,需瞭解大腦神經網絡如何形成功能。大腦功能乃根植於神經網絡各組成部分間的聯繫與交互作用,而如何觀察並分析每一腦區所產生的功能性訊號,可說是破譯大腦功能形成機制的關鍵。倘若欲探究大腦功能形成之機制,分析由數百乃至數千的神經細胞所構成的微網絡的介觀動力學將有其必要。著眼於此一挑戰,提出對應之分析演算法,並實際運用於大腦功能形成之探索,就顯得至關重要。為此,本實驗室近幾年已陸續建置一可用於果蠅大腦功能性數據分析之整合性分析平台,功能包含:影像重建及大腦正規化與自動化腦功能區劃定。然而,此平台於果蠅功能性數據實際應用之驗證仍付之闕如。因應此一需求,本研究選定果蠅嗅覺迴路作為研究標的,擷取果蠅在受到氣味刺激時蕈狀體的活化反應數據供分析平台驗證,並藉此探究果蠅之嗅覺迴路。我們一共擷取了11組動、靜態雙光子鈣成像,用以對先前提出之演算法進行驗證。從實驗結果可發現,大腦正規化演算法可確實消弭個體果蠅與標準腦模型間的結構差異,而腦功能區劃定演算法亦獲得了預期中的結果,最終於群體分析中所劃定出的共同活化區域佐證了先前大家對果蠅嗅覺迴路的理解。
Understanding how animals implement complex behaviors requires knowledge of the underlying neuronal circuits in the brain. Prior research substantiates the belief that brain functionality involves the mesoscopic dynamics of micro-networks comprised of hundreds or thousands of neurons rather than few neurons, requiring simultaneous measurements of many individual neurons within the network to investigate. Since there is still a huge discrepancy between current connectomics approaches and the ultimate goal of understanding brain functions, the dynamic of neural networks in higher brain centers remains largely unknown. To pave the way toward establishing a whole-brain integrated connectome, a brain functional data analysis framework, including volumetric image reconstruction, brain warping and functional area delineation, was presented in the previous studies, however, its potential to develop a Drosophila functional connectome database has not been explored. In this study, the framework was employed to the fluorescence data taken by a two-photon optical brain imaging system for investigating the functional pathways of the Drosophila olfactory system. The results demonstrate that the brain functional data analysis framework can not only co-register the functional data of Drosophila individuals into a standard stereotaxic space but also delineate the expected brain regions adequately. The group results of functional area delineation were in common with our previous understanding of the Drosophila olfactory system.
摘要
Abstract
致謝
目錄
圖目錄
表目錄
第一章 緒論---------------------------1
1.1 研究背景--------------------------1
1.2 研究動機與文獻回顧----------------2
1.3 論文架構--------------------------4
第二章 功能性數據擷取與分析平台介紹---5
2.1 高速雙光子顯微成像系統------------5
2.2 影像重建演算法--------------------8
2.3 大腦正規化------------------------8
2.4 腦功能區的劃定--------------------14
2.4.1 鈣離子反應函數的模型建置與估算--14
2.4.2 相關性法與廣義線性模型----------16
2.4.3 假設檢定與隨機場理論------------17
第三章 實驗設計-----------------------20
3.1 原位標準腦模型與標準蕈狀體模型----20
3.2 活體樣品準備----------------------22
3.3 實驗規劃--------------------------24
3.4 常態性試驗------------------------26
第四章 結果與討論---------------------27
4.1 雙光子鈣成像數據重建--------------27
4.2 大腦正規化------------------------29
4.3 動態雙光子鈣成像之數據前處理------40
4.4 腦功能區劃定----------------------41
4.4.1 鈣離子反應函數的估算------------41
4.4.2 假設檢定與隨機場理論------------43
4.4.3 常態性試驗----------------------47
4.4.4 活體果蠅之實驗數據篩選----------50
4.5 群體分析--------------------------51
第五章 結論---------------------------55
參考文獻------------------------------56
[1] E. R. Kandel et al., Principles of neural science. McGraw-hill New York, 2000.
[2] D. Mareschal et al., Neuroconstructivism: How the brain constructs cognition. Oxford University Press, 2007.
[3] D. Walker, Y. Chew, and W. Schafer, "The Oxford Handbook of Invertebrate Neurobiology”," in Genetics of Behavior in C. elegans: Oxford University Press, 2017.
[4] P. LaFreniere, Adaptive origins: Evolution and human development. Psychology Press, 2011.
[5] S. R. y Cajal, Comparative study of the sensory areas of the human cortex. Clark University, 1899.
[6] J. A. De Carlos and J. Borrell, "A historical reflection of the contributions of Cajal and Golgi to the foundations of neuroscience," Brain Res. Rev., vol. 55, no. 1, pp. 8-16, 2007.
[7] N. T. H. U. Brain Research Center, . "FlyCircuit 1.2." Brain Research Center,. National Tsing Hua University,. http://www.flycircuit.tw (accessed Dec 22, 2019).
[8] A.-S. Chiang et al., "Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution," Curr. Biol., vol. 21, no. 1, pp. 1-11, 2011.
[9] H.-J. Park and K. Friston, "Structural and functional brain networks: from connections to cognition," Science, vol. 342, no. 6158, p. 1238411, 2013.
[10] O. Sporns, "Structure and function of complex brain networks," Dialogues Clin. Neurosci., vol. 15, no. 3, p. 247, 2013.
[11] W. Gobel and F. Helmchen, "In vivo calcium imaging of neural network function," Physiology, vol. 22, no. 6, pp. 358-365, 2007.
[12] S. Waddell, "Dopamine reveals neural circuit mechanisms of fly memory," Trends Neurosci., vol. 33, no. 10, pp. 457-464, 2010.
[13] L. Kahsai and T. Zars, "Learning and memory in Drosophila: behavior, genetics, and neural systems," in International review of neurobiology, vol. 99: Elsevier, 2011, pp. 139-167.
[14] R. L. Davis, "Traces of Drosophila memory," Neuron, vol. 70, no. 1, pp. 8-19, 2011.
[15] J. Dubnau and A.-S. Chiang, "Systems memory consolidation in Drosophila," Curr. Opin. Neurobiol., vol. 23, no. 1, pp. 84-91, 2013.
[16] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, "The structure of the nervous system of the nematode Caenorhabditis elegans," Philos. Trans. R. Soc. Lond. B Biol. Sci., vol. 314, no. 1165, pp. 1-340, 1986.
[17] S. J. Cook et al., "Whole-animal connectomes of both Caenorhabditis elegans sexes," Nature, vol. 571, no. 7763, pp. 63-71, 2019.
[18] K. Ryan, Z. Lu, and I. A. Meinertzhagen, "The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling," Elife, vol. 5, p. e16962, 2016.
[19] K. Ryan, Z. Lu, and I. A. Meinertzhagen, "Circuit homology between decussating pathways in the Ciona larval CNS and the vertebrate startle-response pathway," Curr. Biol., vol. 27, no. 5, pp. 721-728, 2017.
[20] K. Eichler et al., "The complete connectome of a learning and memory centre in an insect brain," Nature, vol. 548, no. 7666, pp. 175-182, 2017.
[21] S.-y. Takemura et al., "A visual motion detection circuit suggested by Drosophila connectomics," Nature, vol. 500, no. 7461, pp. 175-181, 2013.
[22] V. Croset, C. D. Treiber, and S. Waddell, "Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics," Elife, vol. 7, p. e34550, 2018.
[23] Z. Zheng et al., "A complete electron microscopy volume of the brain of adult Drosophila melanogaster," Cell, vol. 174, no. 3, pp. 730-743. e22, 2018.
[24] T. Ohyama et al., "A multilevel multimodal circuit enhances action selection in Drosophila," Nature, vol. 520, no. 7549, pp. 633-639, 2015.
[25] H.-H. Lin, L.-A. Chu, T.-F. Fu, B. J. Dickson, and A.-S. Chiang, "Parallel neural pathways mediate CO2 avoidance responses in Drosophila," Science, vol. 340, no. 6138, pp. 1338-1341, 2013.
[26] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and W. Denk, "Connectomic reconstruction of the inner plexiform layer in the mouse retina," Nature, vol. 500, no. 7461, pp. 168-174, 2013.
[27] C. I. Bargmann and E. Marder, "From the connectome to brain function," Nat. Methods, vol. 10, no. 6, p. 483, 2013.
[28] V. Emiliani, A. E. Cohen, K. Deisseroth, and M. Häusser, "All-optical interrogation of neural circuits," J. Neurosci., vol. 35, no. 41, pp. 13917-13926, 2015.
[29] C.-W. Lin et al., "Automated in situ brain imaging for mapping the Drosophila connectome," J. Neurogenet., vol. 29, no. 4, pp. 157-168, 2015.
[30] M. Zhang, Z. Tang, X. Liu, and J. Van der Spiegel, "Electronic neural interfaces," Nature Electronics, vol. 3, no. 4, pp. 191-200, 2020/04/01 2020, doi: 10.1038/s41928-020-0390-3.
[31] H. Lütcke and F. Helmchen, "Two-photon imaging and analysis of neural network dynamics," Reports on Progress in Physics, vol. 74, no. 8, p. 086602, 2011.
[32] K. Svoboda and R. Yasuda, "Principles of two-photon excitation microscopy and its applications to neuroscience," Neuron, vol. 50, no. 6, pp. 823-839, 2006.
[33] J. Akerboom et al., "Optimization of a GCaMP calcium indicator for neural activity imaging," J. Neurosci., vol. 32, no. 40, pp. 13819-13840, 2012.
[34] T.-W. Chen et al., "Ultrasensitive fluorescent proteins for imaging neuronal activity," Nature, vol. 499, no. 7458, p. 295, 2013.
[35] H. Dana et al., "High-performance calcium sensors for imaging activity in neuronal populations and microcompartments," Nat. Methods, vol. 16, no. 7, pp. 649-657, 2019.
[36] C. Grienberger and A. Konnerth, "Imaging calcium in neurons," Neuron, vol. 73, no. 5, pp. 862-885, 2012.
[37] S. R. Spindler and V. Hartenstein, "The Drosophila neural lineages: a model system to study brain development and circuitry," Dev. Genes Evol., vol. 220, no. 1-2, pp. 1-10, 2010.
[38] J. Leeming. "New neuroscience tools for team science in ‘big data’ era." Springer Nature Limited,. http://blogs.nature.com/naturejobs/2017/01/26/new-neuroscience-tools-for-team-science-in-big-data-era/ (accessed Dec 22, 2019).
[39] D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L. Adelman, and D. W. Tank, "Imaging large-scale neural activity with cellular resolution in awake, mobile mice," Neuron, vol. 56, no. 1, pp. 43-57, 2007.
[40] A. Miri, K. Daie, R. D. Burdine, E. Aksay, and D. W. Tank, "Regression-based identification of behavior-encoding neurons during large-scale optical imaging of neural activity at cellular resolution," J. Neurophysiol., vol. 105, no. 2, pp. 964-980, 2010.
[41] M. M. Dorostkar, E. Dreosti, B. Odermatt, and L. Lagnado, "Computational processing of optical measurements of neuronal and synaptic activity in networks," J. Neurosci. Methods, vol. 188, no. 1, pp. 141-150, 2010.
[42] H. Lütcke et al., "Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice," Frontiers in neural circuits, vol. 4, p. 9, 2010.
[43] O. Sporns, G. Tononi, and R. Kötter, "The human connectome: a structural description of the human brain," PLoS Comput. Biol., vol. 1, no. 4, p. e42, 2005.
[44] F. G. Ashby, Statistical analysis of fMRI data. MIT press, 2019.
[45] A. Badura, X. R. Sun, A. Giovannucci, L. A. Lynch, and S. S. H. Wang, "Fast calcium sensor proteins for monitoring neural activity," Neurophotonics, vol. 1, no. 2, p. 025008, 2014.
[46] 徐國仁, "高速及深組織光學顯微技術應用於果蠅腦功能之研究," 博士, 物理學研究所, 國立臺灣大學, 台北市, 2018. [Online]. Available: https://hdl.handle.net/11296/h9a5bf
[47] K.-J. Hsu, K.-Y. Li, Y.-Y. Lin, A.-S. Chiang, and S.-W. Chu, "Optimizing depth-of-field extension in optical sectioning microscopy techniques using a fast focus-tunable lens," Opt. Express, vol. 25, no. 14, pp. 16783-16794, 2017.
[48] K.-J. Hsu et al., "Millisecond two-photon optical ribbon imaging for small-animal functional connectome study," Optics Letters, vol. 44, no. 13, pp. 3190-3193, 2019.
[49] 吳順吉, "基於雙光子顯微數據之自動化腦功能區劃定及神經網絡動態分析之研究," 科技部補助專題研究計畫成果報告 MOST106-2221-E-007-059, 2018.
[50] 吳順吉, "基於雙光子顯微數據之神經網絡建置及動態分析與果蠅嗅覺功能形成探索," 科技部補助專題研究計畫期中報告 MOST107-2221-E007-036-MY2, 2019.
[51] F. S. Pavone and S. Shoham, Handbook of Neurophotonics. CRC Press, 2020.
[52] M. Duocastella, B. Sun, and C. B. Arnold, "Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics," J. Biomed. Opt., vol. 17, no. 5, p. 050505, 2012.
[53] H. Ni et al., "A robust image registration interface for large volume brain atlas," Sci. Rep., vol. 10, no. 1, pp. 1-16, 2020.
[54] J. M. Górriz, E. W. Lang, and J. Ramírez, Recent advances in biomedical signal processing. Bentham Science Publishers, 2011.
[55] C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor, and C. De Boor, A practical guide to splines. springer-verlag New York, 1978.
[56] P. J. Besl and N. D. McKay, "Method for registration of 3-D shapes," in Sensor fusion IV: control paradigms and data structures, 1992, vol. 1611: International Society for Optics and Photonics, pp. 586-606.
[57] Y. Chen and G. Medioni, "Object modelling by registration of multiple range images," Image Vision Comput., vol. 10, no. 3, pp. 145-155, 1992.
[58] R. Boyle et al., Advances in Visual Computing: Second International Symposium, ISVC 2006, Lake Tahoe, NV, USA, November 6-8, 2006, Proceedings. Springer, 2006.
[59] S. Rusinkiewicz and M. Levoy, "Efficient variants of the ICP algorithm," in Proceedings Third International Conference on 3-D Digital Imaging and Modeling, 2001: IEEE, pp. 145-152.
[60] K. S. Arun, T. S. Huang, and S. D. Blostein, "Least-squares fitting of two 3-D point sets," IEEE Transactions on pattern analysis and machine intelligence, no. 5, pp. 698-700, 1987.
[61] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, "Comparing ICP variants on real-world data sets," Autonomous Robots, vol. 34, no. 3, pp. 133-148, 2013.
[62] C. Bhabatosh, Digital image processing and analysis. PHI Learning Pvt. Ltd., 2011.
[63] O. Andrei, 3D affine coordinate transformations. 2006.
[64] MathWorks. "RegularStepGradientDescent (r2020a)." The MathWorks, Inc. https://www.mathworks.com/help/images/ref/registration.optimizer.regularstepgradientdescent.html (accessed Jun 01, 2020).
[65] J.-P. Thirion, "Image matching as a diffusion process: an analogy with Maxwell's demons," Med. Image Anal., vol. 2, no. 3, pp. 243-260, 1998.
[66] P. Cachier, X. Pennec, and N. Ayache, "Fast non rigid matching by gradient descent: Study and improvements of the" demons" algorithm," 1999.
[67] J.-P. Thirion, "Image matching as a diffusion process: an analogy with Maxwell's demons," 1998.
[68] H. Wang et al., "Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy," Phys. Med. Biol., vol. 50, no. 12, p. 2887, 2005.
[69] D.-J. Kroon and C. H. Slump, "MRI modalitiy transformation in demon registration," in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009: IEEE, pp. 963-966.
[70] F. A. Graybill, Theory and application of the linear model. Duxbury press North Scituate, MA, 1976.
[71] A. Maesani, P. Ramdya, S. Cruchet, K. Gustafson, R. Benton, and D. Floreano, "Fluctuation-driven neural dynamics reproduce Drosophila locomotor patterns," PLoS Comput. Biol., vol. 11, no. 11, p. e1004577, 2015.
[72] D. A. Pacheco, S. Y. Thiberge, E. Pnevmatikakis, and M. Murthy, "Auditory Activity is Diverse and Widespread Throughout the Central Brain of Drosophila," bioRxiv, p. 709519, 2019.
[73] K. J. Worsley, "Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images," The Annals of Statistics, vol. 23, no. 2, pp. 640-669, 1995.
[74] K. J. Worsley, S. Marrett, P. Neelin, A. C. Vandal, K. J. Friston, and A. C. Evans, "A unified statistical approach for determining significant signals in images of cerebral activation," Hum. Brain Mapp., vol. 4, no. 1, pp. 58-73, 1996.
[75] K. J. Friston, C. Frith, P. Liddle, and R. Frackowiak, "Comparing functional (PET) images: the assessment of significant change," J. Cereb. Blood Flow Metab., vol. 11, no. 4, pp. 690-699, 1991.
[76] K. J. Worsley, A. C. Evans, S. Marrett, and P. Neelin, "A three-dimensional statistical analysis for CBF activation studies in human brain," J. Cereb. Blood Flow Metab., vol. 12, no. 6, pp. 900-918, 1992.
[77] H. Wang et al., "High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice," Proceedings of the National Academy of Sciences, vol. 104, no. 19, pp. 8143-8148, 2007.
[78] A. Sugie, G. Marchetti, and G. Tavosanis, "Structural aspects of plasticity in the nervous system of Drosophila," Neural Development, vol. 13, no. 1, p. 14, 2018.
[79] H.-H. Lin, J. S.-Y. Lai, A.-L. Chin, Y.-C. Chen, and A.-S. Chiang, "A map of olfactory representation in the Drosophila mushroom body," Cell, vol. 128, no. 6, pp. 1205-1217, 2007.
[80] M. De Bruyne, K. Foster, and J. R. Carlson, "Odor coding in the Drosophila antenna," Neuron, vol. 30, no. 2, pp. 537-552, 2001.
[81] M. Knaden, A. Strutz, J. Ahsan, S. Sachse, and B. S. Hansson, "Spatial representation of odorant valence in an insect brain," Cell Rep., vol. 1, no. 4, pp. 392-399, 2012.
[82] F. Delestro, L. Scheunemann, M. Pedrazzani, P. Tchenio, T. Preat, and A. Genovesio, "In vivo large-scale analysis of Drosophila neuronal calcium traces by automated tracking of single somata," Sci. Rep., vol. 10, no. 1, pp. 1-14, 2020.
[83] T. Boto, T. Louis, K. Jindachomthong, K. Jalink, and S. M. Tomchik, "Dopaminergic modulation of cAMP drives nonlinear plasticity across the Drosophila mushroom body lobes," Curr. Biol., vol. 24, no. 8, pp. 822-831, 2014.
[84] Y. Wang et al., "Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging," J. Neurosci., vol. 24, no. 29, pp. 6507-6514, 2004.
[85] M. C. Stensmyr, E. Giordano, A. Balloi, A.-M. Angioy, and B. S. Hansson, "Novel natural ligands for Drosophila olfactory receptor neurones," J. Exp. Biol., vol. 206, no. 4, pp. 715-724, 2003.
[86] M. C. Larsson, A. I. Domingos, W. D. Jones, M. E. Chiappe, H. Amrein, and L. B. Vosshall, "Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction," Neuron, vol. 43, no. 5, pp. 703-714, 2004.
[87] E. Versace, A. Eriksson, F. Rocchi, I. Castellan, P. Sgadò, and A. Haase, "Physiological and behavioral responses in Drosophila melanogaster to odorants present at different plant maturation stages," Physiol. Behav., vol. 163, pp. 322-331, 2016.
[88] M. Schubert, B. S. Hansson, and S. Sachse, "The banana code—natural blend processing in the olfactory circuitry of Drosophila melanogaster," Front. Physiol., vol. 5, p. 59, 2014.
[89] N. M. Razali and Y. B. Wah, "Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests," Journal of statistical modeling and analytics, vol. 2, no. 1, pp. 21-33, 2011.
[90] G. Marsaglia, W. W. Tsang, and J. Wang, "Evaluating Kolmogorov’s distribution," Journal of Statistical Software, vol. 8, no. 18, pp. 1-4, 2003.
[91] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE transactions on image processing, vol. 13, no. 4, pp. 600-612, 2004.
[92] Y. Aso et al., "Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila," Elife, vol. 3, p. e04580, 2014.
[93] Y. Aso et al., "The neuronal architecture of the mushroom body provides a logic for associative learning," elife, vol. 3, p. e04577, 2014.
[94] D. Owald and S. Waddell, "Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila," Curr. Opin. Neurobiol., vol. 35, pp. 178-184, 2015.
[95] J. H. Byrne, Learning and memory: a comprehensive reference. Academic Press, 2017.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *