帳號:guest(3.147.66.128)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林漢廷
作者(外文):Lin, Han-Ting
論文名稱(中文):探討去合金化效應對鉑修飾之鎳錫鈀多尺度觸媒於鹼性環境中氧氣還原反應之影響
論文名稱(外文):Oxygen reduction reaction properties of electrochemically dealloyed hierarchical structured Pt-clusters decorated Ni/SnOx/Pd in alkaline media
指導教授(中文):陳燦耀
林滄浪
指導教授(外文):Chen, Tsan-Yao
Lin, Tsang-Lang
口試委員(中文):王冠文
陳馨怡
口試委員(外文):Wang, Kuan-Wen
Chen, Hsin-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011555
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:88
中文關鍵詞:去合金化觸媒氧氣還原反應燃料電池鹼性環境
外文關鍵詞:dealloyingcatalystoxygen reduction reactionfuel cellalkaline mediaPt
相關次數:
  • 推薦推薦:0
  • 點閱點閱:420
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
由於現今全球能源消耗與日俱增,全球皆致力於尋找新的替代能源,而燃料電池以其低汙染、高效率、便利性等特點成為眾多再生能源中發展的趨勢,但由於陰極氧氣還原觸媒材料的鉑的成本以及反應能障的問題,使得燃料電池依舊無法商業化發展,因此改善觸媒成本並使氧還原活性的提升成為現今研究的主要方向。
本研究利用濕式化學法合成多元金屬(鎳、錫、鈀)多尺度結構觸媒,並利用不同當量貴金屬(鉑)的修飾於觸媒表面,再探究其在鹼性環境中氧氣還原催化活性受去合金化製程處理之影響。利用X光繞射光譜(XRD),X光吸收光譜(XAS),高解析電子顯微境(TEM)等儀器分析觸媒結構,並由電化學循環伏安法與一氧化碳剝除法確認合金化處理能改變表面組成,使活性上升。相較商用白金觸媒(J.M.Pt/C),經過去合金化後含有白金成分(~1.0 wt% Pt)之鎳錫鈀鉑四元觸媒(命名為NiSnPdPt0025)之質量活性(Mass Activity, MA)最高可提升約67倍。顯見該處理對含有氧化物之觸媒在氧氣還原催化效果極佳。改變修飾鉑濃度則可有效抑制表面氧化,且隨著鉑含量的提升,觸媒之奈微結構與表面形貌也會因為賈凡尼置換效應(galvanic replacement)程度增加而改變。本研究所設計之四元奈米觸媒可顯著降低氧還原反應材料之鉑金屬用量,樣品中的氧化問題可藉由些微增加白金或是電化學去合金處理改善,下一步重點在如何有效改善材料之反應耐久性,可能的做法為調整金屬還原程序、成長過程的還原劑用量比、以及表面還原反應改質處理等方法。
Due to the increasing global energy consumption, the world is devoted to finding new alternative energy, and fuel cells with its low pollution, high efficiency, convenience has become a trend in much renewable energy development, but the inherent characteristics of Pt such as its high primitive cost and reaction barrier height make it unfit for commercial application, in this context, searching for highly active and low-cost nanocatalysts (NCs) for the oxygen reduction reaction (ORR) is a crucial endeavor.
In this study, quaternary metallic NCs consisting of the Ni, Sn, Pd hierarchical structure are synthesized by the wet chemical reduction method with different Pt contents (0025~03 mole ratio, namely NSPP) , further explore the influence of its oxygen reduction catalytic activity in alkaline environment (0.1M KOH) by dealloying process treatment, the catalyst structure is analyzed by instruments such as X-ray diffraction (XRD), X-ray absorption spectra (XAS), high-resolution electron microscopy (HRTEM). Through analysis of cyclic voltammetry (CV) and carbon monoxide stripping results, we demonstrated that enhanced ORR activities for the dealloying process, resulting in changed surface composition on the NCs. Compared to commercial platinum catalysts (J.M.Pt/C), the mass activity of NiSnPdPt0025 with platinum composition (-1.0 wt% Pt) after dealloying can be increased by up to 67 times. It is shown that the treatment has excellent catalyzing effect on oxygen reduced the catalyst containing oxides. Changing the concentration of modified platinum can effectively inhibit surface from oxidation, and as the platinum content increases, the catalyst's microstructure and surface morphology will also be changed due to the increase in the degree of galvanic replacement effect. The institute designed the four-metal nano-catalyst (NCs) can significantly reduce the amount of platinum metal oxygen reduction reaction material, the oxidation problem in the sample can be optimized by increasing some platinum or through the electrochemical de-alloy treatment, the next topic is focus on how to effectively improve the durability of the material reaction, possibly the practice is to adjust the metal reduction procedure, loading of reducing agent during growth, as well as surface reduction reaction modification treatment methods.
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第1章 緒論 1
1.1 研究背景 1
1.2 燃料電池的發展及簡介 2
1.3 燃料電池種類及特性 3
1.3.1 質子交換膜燃料電池(proton exchange membrane fuel cell, PEMFC) 4
1.3.2 鹼性燃料電池(alkaline fuel cell, AFC) 4
1.3.3 磷酸燃料電池(phosphoric Acid Fuel Cell, PAFC) 4
1.3.4 熔融碳酸鹽燃料電池(molten carbonate fuel cell, MCFC) 5
1.4 鹼性燃料電池之工作原理 6
1.5 鹼性燃料電池發展瓶頸 9
1.6 氧氣還原反應機制 9
1.7 良好的觸媒需具備的性質 12
1.7.1. 活性 (Activity) 12
1.7.2. 選擇性 (Selectivity) 13
1.7.3. 穩定性 (Stability) 14
1.8 研究動機 16
第2章 文獻回顧 17
2.1. 觸媒的改良應用於氧氣還原反應 17
2.2. 去合金化效應簡介及應用 18
2.3. 提升觸媒活性位點 23
2.3.1. 觸媒尺寸 23
2.3.2. 觸媒載體 24
2.3.3. 觸媒形貌 24
2.4. 提升觸媒本質活性 25
2.4.1. 合金結構 (Alloy) 27
2.4.2. 核殼結構 (Core-Shell Structure) 28
2.5. 文獻回顧總結 30
第3章 實驗方法 31
3.1 實驗設計 31
3.2 實驗藥品 32
3.3 實驗步驟 33
3.4 材料結構分析 34
3.4.1. 高解析穿透式電子顯微鏡 (HRTEM) 34
3.4.2. X光繞射分析儀 (X-ray diffraction, XRD) 36
3.4.3. X光光電子圖譜 (X-ray photoelectron spectroscopy, XPS) 41
3.4.4. X光吸收光譜 (X-ray absorption spectroscopy, XAS) 43
3.4.5. 感應耦合電漿分析 (Inductively Coupled Plasma, ICP) 47
3.5 電化學分析 49
3.5.1 循環伏安法 (Cyclic Voltammetry, CV) 49
3.5.2 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 51
3.5.3 一氧化碳剝除 (CO-stripping) 54
第4章 結果與討論 55
4.1. 實驗項目說明 55
4.2. 結構分析 56
4.2.1. 高解析穿透式電子顯微鏡 (HRTEM) 56
4.2.2. X光繞射分析 (X-ray diffraction, XRD) 58
4.2.3. X光吸收光譜 (X-ray absorption spectroscopy, XAS) 60
4.2.4. X光光電子能譜 (X-ray photoelectron spectroscopy, XPS) 69
4.2.5. 感應耦合電漿分析 (Inductively Coupled Plasma, ICP) 70
4.3. 電化學分析 72
4.3.1. 循環伏安法 (Cyclic Voltammetry, CV) 72
4.3.2. 去合金化過程 (dealloying) 74
4.3.3. 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 77
4.3.4. 一氧化碳剝除 (CO-stripping) 80
第5章 結論 82
參考文獻 84

1. https://ourfiniteworld.com/2012/03/12/world-energy-consumption-since-1820-in-charts/
2. http://www.jobsinfuelcells.com/fctypes.htm
3. https://vimeo.com/channels/1192944/247790733
4. Wu, Mingjie & Zhang, Gaixia & Wu, Minghao & Prakash, Jai & Sun, Shuhui. (2019).. 10.1016/j.ensm.2019.05.018.
5. Hammer B, JK Norskov. Nature 376: 238-240. 1995.
6. https://sites.google.com/site/orrcatalysiswithptbasedcsnps/home/d-band-theory
7. Oliver T. Holton, Joseph W. Stevenson Johnson Matthey, Platinum Metals Rev., 2013, 57, (4), 259–271
8. K. S. Lyons, M. Teliska, W. Baker and J. Pietron, “Low-Platinum Catalysts for Oxygen Reduction at PEMFC Cathodes”, DOE Hydrogen Program, US Department of Energy, Washington, DC, USA, 2005, pp. 823–827
9. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 108, (46), 17886
10. E. Bardal, “Corrosion and Protection”, Engineering Materials and Processes, Springer-Verlag, London, UK, 2004
11. M. Pourbaix, “Lectures on Electrochemical Corrosion”, Plenum Press, New York, USA, 1973
12. Z. W. She, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov and T. F. Jaramillo, Science, 2017 .355
13. Wang F, Yu H, Feng T, Zhao D, Piao J and Lei J (2020) Surface Roughed and Pt-Rich Bimetallic Electrocatalysts for Hydrogen Evolution Reaction. Front. Chem. 8:422. doi: 10.3389/fchem.2020.00422
14. Gunji, T., Noh, S. H., Ando, F., Tanabe, T., Han, B., Ohsaka, T., & Matsumoto, F. (2018). Journal of Materials Chemistry A, 6(30), 14828-14837.
15. F. H. Lai, W. N. Su, L. S. Sarma, D. G. Liu, C. A. Hsieh, J. F. Lee, and B. J. Hwang, Chem.-Eur. J. 16, 4602 (2010).
16. Shao M, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 2011;11(9):3714‐3719.
17. A. Buasri, B. Ksapabutr, M. Panapoy and N. Chaiyut Adv Sci Lett, 19 (12) (2013), pp. 3473-3476
18. Y. Takasu, K. Kawaguchi, W. Sugimoto and Y. Murakami Sci Rep, 48 (25) (2003), pp. 3861-3868
19. J.A.S. Bett, K. Kinoshita and P. Stonehart J Catal, 41 (1) (1976), pp. 124-133
20. Science 21 Mar 2014: Vol. 343, Issue 6177, pp. 1339-1343
DOI: 10.1126/science.1249061
21. Jiang, Kun & Zhang, Hanxuan & Zou, Shouzhong & Cai, Wen-Bin. (2014). Physical chemistry chemical physics : PCCP. 16. 10.1039/c4cp03151b.
22. Y. Gauthier , M. Schmid , S. Padovani , E. Lundgren , V. Bus , G. Kresse , J. Redinger and P. Varga , Phys. Rev. Lett., 2001, 87 , 036103
23. P. Liu and J. K. Nørskov , Phys. Chem. Chem. Phys., 2001, 3 , 3814 —3818
24. L. A. Kibler , A. M. El-Aziz , R. Hoyer and D. M. Kolb , Angew. Chem., Int. Ed., 2005, 44 , 2080 —2084
25. S. Zhang , X. Zhang , G. Jiang , H. Zhu , S. Guo , D. Su , G. Lu and S. Sun , J. Am. Chem. Soc., 2014, 136 , 7734 —7739
26. Mun BS, Lee C, Stamenkovic V, Markovic NM, Ross PN. J Chem Phys 122: 184712. 2005.
27. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis, Nat. Mater., 2018,
28. Kim, Minho & Lee, Chungyeon & Ko, Sung & Nam, Jwa-Min. (2018). Journal of Solid State Chemistry. 270. 10.1016/j.jssc.2018.11.014.
29. Zhuang, Y., J.-P. Chou, P.-Y. Liu, T.-Y. Chen, J.-j. Kai, A. Hu and H.-Y. Tiffany Chen Dai, S., J.-P. Chou, K.-W. Wang, Y.-Y. Hsu, A. Hu, X. Pan and T.-Y. Chen (2019). Nat Commun 10, 440 (2019)
30. (2018). Journal of Materials Chemistry A 6(46): 23326-23335.
31. http://nscric.site.nthu.edu.tw/p/404-1186-122226.php?Lang=zh-tw
32. https://m.yao51.com/jiankangtuku/mghknhcv.html
33. https://xrdukm.wixsite.com/xrdcrim/xrd-information
34. https://link.springer.com/referenceworkentry/10.1007%2F978-3-540-72816-0_12847#howtocite
35. https://www.nsrrc.org.tw/Chinese/experiment.aspx#3
36. O. Ali1, R. Ahmed1, N. H. Faisal, Nayef M. Alanazi Influence of Post-treatment on the Microstructural and Tribomechanical Properties of Suspension Thermally Sprayed WC–12 wt%Co Nanocomposite Coatings
37. Nasir, Salisu & Hussein, Mohd & Zainal, Zulkarnain & Yusof, Nor & Zobir, Syazwan & ALIBE, IBRAHIM. (2018).. Bioresources. 14. 10.15376/biores.14.1.Nasir.
38. file:///C:/Users/caeser/Downloads/C10703281%20(1).pdfhttps://ywcmatsci.yale.edu/xps
39. G. Samjeske, S.-i. Nagamatsu, S. Takao, K. Nagasawa, Y. Imaizumi, O. Sekizawa, et al. Phys Chem Chem Phys, 15 (2013), pp. 17208-17218
40. https://en.wikipedia.org/wiki/X-ray_absorption_spectroscopy
41. https://www.wikiwand.com/en/X-ray_absorption_near_edge_structure
42. https://www.aimspress.com/article/10.3934/matersci.2017.4.856/figure.html
43. https://www.nsrrc.org.tw/Chinese/experiment.aspx#3
44. https://eag.com/zh-TW/resources/appnotes/icp-oes-and-icp-ms-detection-limit-guidance/
45. http://nscric.site.nthu.edu.tw/p/404-1186-122439.php?Lang=zh-tw
46. Mais, Laura. (2015). Electrodeposition of Nb, Ta, Zr and Cu from Ionic Liquid for Nanocomposites Preparation.
47. Fatma Saidani, Dominic Rochefort Carbon Monoxide Oxidation on Nanostructured Pt Thin Films Synthesized by Pulsed Laser Deposition: Insights into the Morphology Effects
48. N. Zhang, S. Zhang, C. Du, Z. Wang, Y. Shao, F. Kong, et al. Electrochim Acta, 117 (2014), pp. 413-419
49. S. Beyhan, J.-M. Léger, F. Kadırgan Appl Catal B, 144 (2014), pp. 66-74
50. B.J. Su, K.W. Wang, T.C. Cheng, C.J. Tseng Mater Chem Phys, 135 (2012), pp. 395-400
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *