帳號:guest(13.59.173.75)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫崇哲
作者(外文):Sun, Chong-Jhe
論文名稱(中文):高遷移率通道材料鍺與矽鍺之鐵電負電容電晶體與互補式場效電晶體之研究
論文名稱(外文):Study of High Mobility Ge and SiGe Channel Ferroelectric Negative Capacitance Field-effect Transistor and Complementary Field-effect Transistors
指導教授(中文):吳永俊
指導教授(外文):Wu, Yung-Chun
口試委員(中文):張廖貴術
巫勇賢
羅廣禮
侯福居
口試委員(外文):Chang-Liao, Kuei-Shu
Wu, Yung-Hsien
Luo, Guang-Li
Hou, Fu-Ju
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011552
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:146
中文關鍵詞:無接面式電晶體高遷移率通道材料鰭式場效電晶體環繞式閘極場效電晶體氧化鉿鋯鐵電負電容次臨界擺幅互補式場效電晶體臨界電壓調變
外文關鍵詞:Junctionless field-effect transistor (JLFET)high mobility channel materialFin field-effect transistor (FinFET)Gate-all-around field-effect transistor (GAAFET)Hafnium zirconium oxide (HfZrO)Ferroelectric Negative capacitanceSubthreshold swing (SS)Complementary field-effect transistor (CFET)threshold voltage adjustment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:282
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年消費性電子產品的市場需求,持續推動著CMOS製程技術的演進,然而為了同時滿足高運算速度、高效能、低功耗與低成本等需求,單純於結構上進行微縮,例如縮短通道長度與降低閘極氧化層厚度,已逐漸無法達成如此艱巨的任務。近年來鐵電負電容電晶體因其可同時提高驅動電流並降低能耗的特點,成為許多研究的焦點,且藉由高載子遷移率通道材料,例如矽鍺、鍺等,還可更進一步提升效能。此外於元件微縮方面,將NMOS與PMOS垂直堆疊於同一平面的互補式場效電晶體(Complementary FET, CFET),可以大大提升電晶體密度,相關的研究也逐漸備受關注。因此本論文旨在應用於莫爾定律之延伸,探討高遷移率通道材料之鐵電負電容電晶體與高遷移率通道材料於互補式場效電晶體之應用。本論文共分為三個部份,(1) 鍺通道反轉式與無接面式鐵電負電容環繞閘極場效電晶體,(2) 高高寬比矽鍺通道鰭式場效電晶體與自發性鍺摻雜之倒T形矽鍺∕矽雙層通道鐵電負電容環繞式閘極場效電晶體,(3)以矽鍺通道鍺比例調變互補式場效電晶體臨界電壓之研究。
第一部分以高載子遷移率鍺作為通道材料,分別製作出傳統反轉式與無接面式氧化鉿鋯鐵電負電容繞式閘極場效電晶體,透過分析無接面式電晶體的電流傳導機制,開關切換過程與傳統反轉式電晶體相似,受到半導體表面電位影響,提出鐵電負電容效應亦可應用於無接面式電晶體上,亦可因其使表面電位放大,而獲得較低的SS。
第二部分提出,以等向性蝕刻開發高高寬比矽鍺通道鰭式電晶體,接著利用相同製程概念,製作出倒T形矽鍺∕矽雙層通道環繞式閘極場效電晶體,並且同時探討其由矽鍺通道自發性將鍺摻入氧化鉿閘極氧化層中的鐵電負電容特性。於高高寬比矽鍺通道鰭式電晶體的研究中,藉由矽鍺通道的高載子遷移率與高高寬比鰭式結構所帶來的閘極控制能力,可同時提高驅動電流及降低關電流。倒T形矽鍺∕矽雙層通道環繞式閘極鐵電場效電晶體的研究中,驗證了矽鍺通道自發性將鍺摻入氧化鉿,退火結晶形成鐵電氧化層,並且結合倒T形環繞式閘極的結構,達到了平均次臨界擺幅(SS)低於60mV/decade。
第三部份我們利用Sentaurus TCAD針對三維堆疊單晶片(monolithic) CFET進行探討。未來高度微縮的CFET元件,於水平方向與垂直方向的堆疊空間,將分別被閘極長度與垂直通道間隙所限制,進而導致雙功函數金屬(dual work function metal)製程的困難,因此在此部分研究中,我們提出利用控制矽鍺通道的鍺含量來調整CFET臨界電壓(VT),這是一項零體積(volume-less)的調整VT方法。我們首先分別分析了矽鍺通道中鍺含量的變化,對NMOS與PMOS的影響,並提供了以此方式調整VT的細節步驟,最後展示出設計的CFET反向器(inverter)特性,以及以此反向器為基礎架構出的6T-SRAM。
In recent years, the market demand for consumer electronic products has been driving the evolution of CMOS process technology. However, merely scaling down device structures, such as shortening channel lengths and reducing gate oxide thickness, is gradually proving inadequate to meet the challenging requirements of high computational speed, efficiency, low-power consumption, and cost-effectiveness. As a result, researchers are focusing on novel approaches, such as ferroelectric negative capacitance FET (NCFET) for lowering power consumption, involving high-mobility channel materials for enhance operation speed, and exploring the potential of Complementary FET (CFET) to significantly improve transistor density. This thesis is divided into three parts.
Part 1 investigates Ge channel NCFET, both conventional inversion-mode and junctionless (JL) structures with hafnium zirconium oxide ferroelectric negative capacitance. The study proposes that since the junctionless FET operates similarly to the conventional inversion-mode one, influenced by the semiconductor surface potential, the NC effect can also be applied to the JLFET, leading to a lower subthreshold swing (SS) due to enhanced surface potential.
Part 2 introduces a novel approach to fabricating high-aspect-ratio SiGe channel FinFETs through isotropic etching. Additionally, it explores the characteristics of an Inverted-T gate-all-around FET (IT-GAAFET) with a SiGe/Si double-channel structure, where germanium is spontaneously doped into the hafnium oxide gate oxide to achieve ferroelectric negative capacitance. The research on high-aspect-ratio SiGe channel FinFETs indicates that leveraging the high carrier mobility and gate control ability of SiGe channels can enhance drive current and reduce off-state leakage current at the same time. Meanwhile, the IT-GAAFET with the dual-channel structure successfully achieves an average subthreshold swing below 60 mV/decade.
Part 3 focuses on the three-dimensional stacked monolithic CFET using Sentaurus TCAD simulations. As device scaling continues, the stacking space in both horizontal and vertical directions will be limited by gate length and vertical channel pitches, making dual-work function metal processing challenging. To address this, a zero-volume adjustment method for the CFET threshold voltage (VT) is proposed, based on controlling the germanium content in the SiGe channel. The study analyzes the impact of varying germanium content on NMOS and PMOS and provides detailed steps for VT tuning. Finally, the design of a CFET inverter and a 6T-SRAM cell based on this inverter are presented.
中 文 摘 要 i
Abstract iii
Acknowledgement vi
Contents vii
List of Figures x
List of Tables xvii
Chapter 1 Introduction 1
1-1 Challenges of Device Scaling and Opportunities 1
1-2 Scaling for Transistor Architecture 5
1-2.1 Multi-Gate Field-Effect Transistor 6
1-2.2 Complementary Field-Effect Transistor 9
1-3 High mobility channel materials 10
1-4 Junctionless Field-Effect Transistor 12
1-5 Organization of the research 16
1-6 Reference 18
Chapter 2 Ferroelectric Negative Capacitance Theory 23
2-1 Boltzmann limit and Negative Capacitance (NC) FET 23
2-2 What is negative capacitance? 28
2-3 Ferroelectric negative capacitance and Landau theory 30
2-4 Experimental observation of negative capacitance and S-curve 34
2-5 Experimental steep slope NCFETs 37
2-6 Interpretation of the physic of NC in NCFETs 39
2-7 Negative Drain-induced barrier lowering (N-DIBL) 44
2-8 Reference 46
Chapter 3 Comprehensive Study of Inversion and Junctionless Ge Nanowire Ferroelectric HfZrO Gate-all-around FETs featuring Steep Subthreshold Slope with Transient Negative Capacitance 53
3-1 Motivation and Literature Review 53
3-2 Device Fabrication 56
3-3 Results and Discussion 58
A. Characteristic of inversion mode n-type and p-type Ge FE-GAAFET 58
B. Ferroelectric TNC effect apply on Ge junctionless NW-GAAFET 65
3-4 Summary 70
3-5 References 71
Chapter 4 SiGe Ultra-thin FinFET and Negative Capacitance SiGe/Si Bilayer Inverted-T Channel GAAFET 77
4-1 Low Ge Content Ultra-Thin Fin Width (5nm) Monocrystalline SiGe n-type FinFET with Low Off State Leakage and High ION/IOFF ratio 77
4-1.1 Motivation and Literature Review 77
4-1.2 Device Fabrication 78
4-1.3 Results and Discussion 80
4-1.4 TCAD simulation 88
4-1.5 summary 89
4-2 Investigation of SiGe/Si Bilayer Inverted-T Channel Gate-all-around Field-effect-transistor with Self-induced Ferroelectric Ge doped HfO2 90
4-2.2 Device Fabrication 91
4-2.3 Results and Discussion 94
4-2.4 TCAD simulation 101
4-2.5 Summary 102
4-3 Reference 104
Chapter 5 Threshold Voltage Adjustment by Varying Ge Content in SiGe p-Channel for Single Metal Shared Gate Complementary FET (CFET) 116
5-1 Motivation and Literature Review 116
5-2 Device Structure and Simulation Approach 118
5-3 Results and Discussion 121
5-4 Summary 130
5-5 Reference 132
Chapter 6 Conclusion 138
Curriculum Vitae 140
Publication List 141
Appendix 145

Ch1 Reference
[1.1] International Roadmap for Devices and Systems (IRDS™) 2022 Edition. [Online]. Available: https://irds.ieee.org/roadmap-2022
[1.2] http://www.intel.com
[1.3] http://www.imec-int.com
[1.4] J. P.Colinge, FinFETs and Other Multi-Gate Transistors: Springer, 2008.
[1.5] S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, and K. Zhang, " A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2SRAM cell size," in 2014 IEEE International Electron Devices Meeting, 2014, pp. 3.7.1-3.7.3. doi:10.1109/IEDM.2014.7046976.
[1.6] Geoffrey Yeap, S.S. Lin, Y.M. Chen, H.L. Shang, P.W. Wang, H.C. Lin, Y.C. Peng, J.Y. Sheu, M. Wang, X. Chen, B.R. Yang, C.P. Lin, F.C. Yang, Y.K. Leung, D.W. Lin, C.P. Chen, K.F. Yu, D.H. Chen, C.Y. Chang, H.K. Chen, P. Hung, C.S. Hou, Y.K. Cheng, J. Chang, L. Yuan, C.K. Lin, C.C. Chen, Y.C. Yeo, M.H. Tsai, H.T. Lin, C.O. Chui, K.B. Huang, W. Chang, H.J. Lin, K.W. Chen, R. Chen, S.H. Sun, Q. Fu, H.T. Yang, H.T. Chiang, C.C. Yeh, T.L. Lee, C.H. Wang, S.L. Shue, C.W. Wu, R. Lu, W.R. Lin, J. Wu, F. Lai, Y.H. Wu, B.Z. Tien, Y.C. Huang, L.C. Lu, Jun He, Y. Ku, J. Lin, M. Cao, T.S. Chang, S.M. Jang, "5nm CMOS Production Technology Platform featuring full-fledged EUV, and High Mobility Channel FinFETs with densest 0.021µm2 SRAM cells for Mobile SoC and High Performance Computing Applications," 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 36.7.1-36.7.4, doi: 10.1109/IEDM19573.2019.8993577.
[1.7] N. Loubet, T. Hook, P. Montanini, C. W. Yeung, S. Kanakasabapathy, M. Guillom, et al., "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 2017, pp. T230-T231.
[1.8] N. Loubet, T. Hook, P. Montanini, C. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 2017, pp. T230-T231. doi:10.23919/VLSIT.2017.7998183.
[1.9] Geumjong Bae, D.-I. Bae, M.Kang, S.M.Hwang, S.S.Kim, B.Seo, T.Y.Kwon, T.J.Lee, C.Moon, Y.M.Choi, K.Oikawa, S.Masuoka, K.Y.Chun, S.H.Park, H.J.Shin, J.C.Kim, K.K.Bhuwalka, D.H.Kim, W.J. Kim, J.Yoo, H.Y.Jeon, M.S.Yang, S.-J.Chung, D.Kim, B.H.Ham, K.J.Park, W.D.Kim, S.H.Park, G.Song, Y.H.Kim, M.S.Kang, K.H.Hwang, C.-H.Park, J.-H.Lee, D.-W. Kim, S-M.Jung, H.K.Kang, "3nm GAA Technology featuring Multi-Bridge-Channel FET for Low Power and High Performance Applications," 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018, pp. 28.7.1-28.7.4, doi: 10.1109/IEDM.2018.8614629.
[1.10] W. Zhang, J. G. Fossum, L. Mathew,” A Hybrid FinFET/SOI MOSFET.” Proceedings IEEE International SOI Conference, 151 (2005)
[1.11] L. Mathew, M. Sadd, S. Kalpat, M. Zavala, T. Stephens, R. Mora, S. Bagchi,C. Parker, J. Vasek, D. Sing, R. Shimer, L. Prabhu, G.O. Workman, G.Ablen, Z. Shi, J. Saenz, B. Min, D. Burnett, B.-Y. Nguyen, J. Mogab, M.M.Chowdhury, W. Zhang, J.G. Fossum: Inverted T channel FET (ITFET) –Fabrication and Characteristics of Vertical-Horizontal, Thin-Body , Multi-Gate , Multi-Orientation Devices, ITFET SRAM Bit-cell operation. A NovelTechnology for 45nm and Beyond CMOS. Technical Digest of IEDM, 713(2005)
[1.12] C. -Y. Huang, G. Dewey, E. Mannebach, A. Phan, P. Morrow, W. Rachmady, I. -C. Tung, N. Thomas, U. Alaan, R. Paul, N. Kabir, B. Krist, A. Oni, M. Mehta, M. Harper, P. Nguyen, R. Keech, S. Vishwanath, K. L. Cheong, J. S. Kang, A. Lilak, M. Metz, S. Clendenning, B. Turkot, R. Schenker1, H. J. Yoo, M. Radosavljevic, and J. Kavalieros, "3-D Self-aligned Stacked NMOS-on-PMOS Nanoribbon Transistors for Continued Moore’s Law Scaling," 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 20.6.1-20.6.4, doi: 10.1109/IEDM13553.2020.9372066.
[1.13] RPillarisetty, "Academic and industry research progress in germanium nanodevices," Nature, vol. 479, p. 324, 11/16/online 2011.
[1.14] C. H. Lee, S. Mochizuki, R. G. Southwick III, J. Li, X. Miao, R. Bao, T. Ando, R. Galatage, S. Siddiqui, C. Labelle, A. Knorr, J. H. Stathis, D. Guo, V. Narayanan, B. Haran, and H. Jagannathan, "A comparative study of strain and Ge content in Si1−xGex channel using planar FETs, FinFETs, and strained relaxed buffer layer FinFETs," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 37.2.1-37.2.4, doi: 10.1109/IEDM.2017.8268509.
[1.15] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, et al., "Nanowire transistors without junctions," Nature Nanotechnology, vol. 5, p. 225, 02/21/online 2010.
[1.16] C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J.-P. Colinge, "Junctionless multigate field-effect transistor," Applied Physics Letters, vol. 94, p. 053511, 2009/02/02 2009.
[1.17] E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, "Theory of the junctionless nanowire FET," IEEE Transactions on Electron Devices, vol. 58, pp. 2903-2910, 2011.
[1.18] C. W. L. J. P. Colinge, N. Dehdashti Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, and R. Yu, "Junctionless Transistors: Physics and Properties," in Semiconductor-On-Insulator Materials for Nanoelectronics Applications, F. B. Alexei Nazarov, Francisco Gamiz, J.-P. Colinge, Jean-Pierre Raskin, V.S. Lysenko, Ed., ed: SPRINGER, 2011.

Ch2 Reference
[2.1] Y. Hang and H. Kabban, "Thermal management in mobile devices: challenges and solutions, in 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), 2015
[2.2] L. B. Kish, "End of Moore's law: thermal (noise) death of integration in micro and nano electronics," Physics Letters A, vol. 305, no. 3-4, pp. 144-149, 2002.
[2.3] K. Jang, T. Saraya, M. Kobayashi, and T. Hiramoto, "Ion /Ioff ratio enhancement and scalability of gate-all-around nanowire negative-capacitance FET with ferroelectric HfO2," Solid State Electron, vol. 136, pp. 60-67, 2017.
[2.4] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, U.K., 2009) 2nd ed., p. 165.
[2.5] M. Kobayashi, "A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor," Applied Physics Express, vol. 11, no. 11, p. 110101, 2018.
[2.6] H. Fuketa, T. Yasufuku, S. Iida, M. Takamiya, M. Nomura, H. Shinohara, and T. Sakurai, "Device-circuit interactions in extremely low voltage CMOS designs (invited)," 2011 International Electron Devices Meeting, Washington, DC, USA, 2011, pp. 25.1.1-25.1.4, doi: 10.1109/IEDM.2011.6131609.
[2.7] A. M. Ionescu, "Energy efficient computing and sensing in the Zettabyte era: From silicon to the cloud," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 1.2.1-1.2.8, doi: 10.1109/IEDM.2017.8268307.
[2.8] J. Y. -C. Sun, "System scaling for intelligent ubiquitous computing," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 1.3.1-1.3.7, doi: 10.1109/IEDM.2017.8268308.
[2.9] IRDS 2017 Edition Reports [https://irds.ieee.org/roadmap-2017].
[2.10] S. Salahuddin and S. Datta, "Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices," Nano Letters, vol. 8, pp. 405-410, 2008. doi:10.1021/nl071804g.
[2.11] S. Salahuddin and S. Datta, "Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?" 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2008, pp. 1-4, doi: 10.1109/IEDM.2008.4796789.
[2.12] Muhammad A. Alam, “ A Tutorial Introduction to Negative Capacitor Field Effect Transistors,” 2015/10/03, https://nanohub.org/resources/23157/about.
[2.13] Michael Hoffmann, Stefan Slesazeck, Thomas Mikolajick, “Progress and future prospects of negative capacitance electronics: A materials perspective.” APL Mater 1 February 2021; 9 (2): 020902. https://doi.org/10.1063/5.0032954.
[2.14] M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford Univrsity Press, 1977).
[2.15] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett. 12, 4318 (2012).
[2.16] L. Xu, S. Shibayama, K. Izukashi, T. Nishimura, T. Yajima, S. Migita, and A. Toriumi, "General relationship for cation and anion doping effects on ferroelectric HfO2 formation," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2016, pp. 25.2.1-25.2.4, doi: 10.1109/IEDM.2016.7838477.
[2.17] R. Landauer, “Can capacitance be negative?,” Collect. Phenom. 2, 167–170 (1976).
[2.18] J. P. Duarte, S. Khandelwal, A. I. Khan, A. Sachid, Y.-K. Lin, H.-L. Chang et al., "Compact models of negative-capacitance FinFETs: Lumped and distributed charge models, in IEEE International Electron Devices Meeting (IEDM), 2016
[2.19] A. I. Khan, Negative capacitance for ultra-low power computing. University of California, Berkeley, 2015.
[2.20] T. Mikolajick, et al., “Basics and Device Applications of Ferroelectricity in Hafnium Oxides,” namlab.
[2.21] Asif Islam Khan, Korok Chatterjee, BrianWang, Steven Drapcho, Long You, Claudy Serrao, Saidur Rahman Bakaul1, Ramamoorthy Ramesh, and Sayeef Salahuddin, “Negative capacitance in a ferroelectric capacitor.” Nature Mater 14, 182–186 (2015). https://doi.org/10.1038/nmat4148.
[2.22] Michael Hoffmann, Franz P. G. Fengler, Melanie Herzig, Terence Mittmann, Benjamin Max, Uwe Schroeder, Raluca Negrea, Pintilie Lucian, Stefan Slesazeck, and Thomas Mikolajick, “Unveiling the double-well energy landscape in a ferroelectric layer.” Nature 565, 464–467 (2019). https://doi.org/10.1038/s41586-018-0854-z
[2.23] M. H. Lee, P.-G. Chen, C. Liu, K.-Y. Chu, C.-C. Cheng, M.-J. Xie, S.-N. Liu, J.-W. Lee, S.-J. Huang, M.-H. Liao, M. Tang, K.-S. Li, and M.-C. Chen, "Prospects for ferroelectric HfZrOx FETs with experimentally CET=0.98nm, SSfor=42mV/dec, SSrev=28mV/dec, switch-off <0.2V, and hysteresis-free strategies," IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015, pp. 22.5.1-22.5.4, doi: 10.1109/IEDM.2015.7409759.
[2.24] M. H. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, M.-H. Liao, C.-A. Jong, K.-S. Li, M.-C. Chen, and C. W. Liu, " IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2016, pp. 12.1.1-12.1.4, doi: 10.1109/IEDM.2016.7838400.
[2.25] W. Chung, M. Si and P. D. Ye, "Hysteresis-free negative capacitance germanium CMOS FinFETs with Bi-directional Sub-60 mV/dec," IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 15.3.1-15.3.4, doi: 10.1109/IEDM.2017.8268395.
[2.26] W. Chung, M. Si and P. D. Ye, "Hysteresis-free negative capacitance germanium CMOS FinFETs with Bi-directional Sub-60 mV/dec," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 15.3.1-15.3.4, doi: 10.1109/IEDM.2017.8268395.
[2.27] Z. Krivokapic, U. Rana, R. Galatage, A. Razavieh, A. Aziz, J. Liu, J. Shi, H. J. Kim, R. Sporer, C. Serrao, A. Busquet, P. Polakowski, J. Müller, W. Kleemeier, A. Jacob, D. Brown, A. Knorr, R. Carter, and S. Banna, "14nm Ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications," IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 15.1.1-15.1.4, doi: 10.1109/IEDM.2017.8268393.
[2.28] Weiwei Gao, Asif Khan, Xavi Marti, Chris Nelson, Claudy Serrao, Jayakanth Ravichandran, Ramamoorthy Ramesh, and Sayeef Salahuddin, "Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure," Nano Lett, vol. 14, no. 10, pp. 5814-9, Oct 8 2014.
[2.29] Z. Liu, M. A. Bhuiyan, and T. P. Ma, "A Critical Examination of ‘Quasi-Static Negative Capacitance’ (QSNC) theory," in 2018 IEEE International Electron Devices Meeting (IEDM), 1-5 Dec. 2018 2018, pp. 31.2.1-31.2.4, doi: 10.1109/IEDM.2018.8614614.
[2.30] Muhammad A. Alam, Mengwei Si, Peide D. Ye, ‘A critical review of recent progress on negative capacitance field-effect transistors.’ Appl. Phys. Lett. 4 March 2019; 114 (9): 090401.
[2.31] A. I. Khan, Negative capacitance for ultra-low power computing. University of California, Berkeley, 2015.
[2.32] C. Jin, T. Saraya, T. Hiramoto and M. Kobayashi, "On the Physical Mechanism of Transient Negative Capacitance Effect in Deep Subthreshold Region," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 368-374, 2019, doi: 10.1109/JEDS.2019.2899727.
[2.33] C. Jin, T. Saraya, T. Hiramoto and M. Kobayashi, "Physical Mechanisms of Reverse DIBL and NDR in FeFETs With Steep Subthreshold Swing," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 429-434, 2020, doi: 10.1109/JEDS.2020.2986345.
[2.34] K. Lee, S. Kim, J. -H. Lee, D. Kwon and B. -G. Park, "Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory," in IEEE Electron Device Letters, vol. 41, no. 8, pp. 1197-1200, Aug. 2020, doi: 10.1109/LED.2020.3000766.
[2.35] J. Seo, J. Lee and M. Shin, "Analysis of Drain-Induced Barrier Rising in Short-Channel Negative-Capacitance FETs and Its Applications," in IEEE Transactions on Electron Devices, vol. 64, no. 4, pp. 1793-1798, April 2017, doi: 10.1109/TED.2017.2658673.
[2.36] Hong Zhou, Daewoong Kwon, Angada B. Sachid, Yuhung Liao, Korok Chatterjee, Ava J. Tan, Ajay K. Yadav, Chenming Hu, and Sayeef Salahuddin, "Negative Capacitance, n-Channel, Si FinFETs: Bi-directional Sub-60 mV/dec, Negative DIBL, Negative Differential Resistance and Improved Short Channel Effect," 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2018, pp. 53-54, doi: 10.1109/VLSIT.2018.8510691.
[2.37] Jiuren Zhou, Genquan Han, Jing Li, Yan Liu, Yue Peng, Jincheng Zhang, Qing-Qing Sun, David Wei Zhang, and Yue Hao, "Negative Differential Resistance in Negative Capacitance FETs," in IEEE Electron Device Letters, vol. 39, no. 4, pp. 622-625, April 2018, doi: 10.1109/LED.2018.2810071.

Ch3 References
[3.1] S. Salahuddin and S. Datta, "Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices," Nano Letters, vol. 8, pp. 405-410, 2008. doi:10.1021/nl071804g.
[3.2] A. I. Khan, K. Chatterjee, J. P. Duarte, Z. Lu, A. Sachid, S. Khandelwal, R. Ramesh, C. Hu, and S. Salahuddin, "Negative Capacitance in Short-Channel FinFETs Externally Connected to an Epitaxial Ferroelectric Capacitor," IEEE Electron Device Letters, vol. 37, pp. 111-114, 2016. doi:10.1109/LED.2015.2501319.
[3.3] D. Kwon et al., "Improved Subthreshold Swing and Short Channel Effect in FDSOI n-Channel Negative Capacitance Field Effect Transistors," IEEE Electron Device Letters, vol. 39, no. 2, pp. 300-303, 2018, doi: 10.1109/LED.2017.2787063.
[3.4] H. Zhou et al., "Negative Capacitance, n-Channel, Si FinFETs: Bi-directional Sub-60 mV/dec, Negative DIBL, Negative Differential Resistance and Improved Short Channel Effect," 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, 2018, pp. 53-54, doi: 10.1109/VLSIT.2018.8510691.
[3.5] A. K. Yadav, K. X. Nguyen, Z. Hong, P. García-Fernández, P. Aguado-Puente, C. T. Nelson, S. Das, B. Prasad, D. Kwon, S. Cheema, A. I. Khan, C. Hu, J. Íñiguez, J. Junquera, L.-Q. Chen, D. A. Muller, R. Ramesh, and S. Salahuddin, "Spatially resolved steady-state negative capacitance," Nature, vol. 565, pp. 468-471, 2019. doi:10.1038/s41586-018-0855-y.
[3.6] J. Xu, S.-Y. Jiang, M. Zhang, H. Zhu, L. Chen, Q.-Q. Sun, and D. W. Zhang, "Ferroelectric HfZrOx-based MoS2 negative capacitance transistor with ITO capping layers for steep-slope device application," Appl. Phys. Lett., vol. 112, no. 10, Mar. 2018, Art. no. 103104, doi: 10.1063/1.5019418.
[3.7] M. Hoffmann, A. I. Khan, C. Serrao, Z. Lu, S. Salahuddin, M. Pešić, S. Slesazeck, U. Schroeder, and T. Mikolajick, "Ferroelectric negative capacitance domain dynamics," J. Appl. Phys., vol. 123, no. 18, May. 2018, Art. no. 184101, doi: 10.1063/1.5030072.
[3.8] M. J. Tsai, P. J. Chen, C. C. Hsu, D. B. Ruan, F. J. Hou, P. Y. Peng, and Y. C. Wu, "Atomic-Level Analysis of Sub-5-nm-Thick Hf0.5Zr0.5O2 and Characterization of Nearly Hysteresis-Free Ferroelectric FinFET," IEEE Electron Device Lett., vol. 40, no. 8, pp. 1233-1236, 2019, doi: 10.1109/LED.2019.2922239.
[3.9] J. Íñiguez, P. Zubko, I. Luk’yanchuk, and A. Cano, "Ferroelectric negative capacitance," Nat. Rev. Mater., vol. 4, no. 4, pp. 243-256, Apr, 2019, doi: 10.1038/s41578-019-0089-0.
[3.10] G. A. Salvatore, A. Rusu, and A. M. Ionescu, "Experimental confirmation of temperature dependent negative capacitance in ferroelectric field effect transistor," Appl. Phys. Lett., vol. 100, no. 16, Apr. 2012, Art. no. 163504, doi: 10.1063/1.4704179.
[3.11] A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, and S. Salahuddin, "Negative capacitance in a ferroelectric capacitor," Nat. Mater., vol. 14, no. 2, pp. 182-186, Feb. 2015, doi: 10.1038/NMAT4148.
[3.12] W. Chung, M. Si, and P. D. Ye, "Hysteresis-free negative capacitance germanium CMOS FinFETs with Bi-directional Sub-60 mV/dec," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 15.3.1-15.3.4. doi:10.1109/IEDM.2017.8268395.
[3.13] C. Su, T. Hong, Y. Tsou, F. Hou, P. Sung, M. Yeh, C. Wan, K. Kao, Y. Tang, C. Chiu, C. Wang, S.Chung, T. You, Y. Huang, C. Wu, K. Lin, G. Luo, K. Huang, Y. Lee, T. Chao, W. Wu, G. Huang, J. Shieh, W. Yeh, and Y. Wang, "Ge nanowire FETs with HfZrOx ferroelectric gate stack exhibiting SS of sub-60 mV/dec and biasing effects on ferroelectric reliability," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 15.4.1-15.4.4. doi:10.1109/IEDM. 2017.8268396.
[3.14] Alam, M.N.K., Roussel, P., Heyns, M. et al. "Positive non-linear capacitance: the origin of the steep subthreshold-slope in ferroelectric FETs. " in Sci Rep, vol. 9, 14957 (2019). doi: 10.1038/s41598-019-51237-2.
[3.15] C. Jin, T. Saraya, T. Hiramoto and M. Kobayashi, "On the Physical Mechanism of Transient Negative Capacitance Effect in Deep Subthreshold Region," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 368-374, 2019, doi: 10.1109/JEDS.2019.2899727.
[3.16] C. Jin, T. Saraya, T. Hiramoto and M. Kobayashi, "Physical Mechanisms of Reverse DIBL and NDR in FeFETs With Steep Subthreshold Swing," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 429-434, 2020, doi: 10.1109/JEDS.2020.2986345.
[3.17] D. Moon, S. Choi, J. P. Duarte, and Y. Choi, "Investigation of Silicon Nanowire Gate-All-Around Junctionless Transistors Built on a Bulk Substrate," IEEE Transactions on Electron Devices, vol. 60, no. 4, pp. 1355-1360, 2013, doi: 10.1109/ted.2013.2247763.
[3.18] Y.-M. Niquet, H. Mera, and C. Delerue, "Impurity-limited mobility and variability in gate-all-around silicon nanowires," Appl. Phys. Lett., vol. 100, no. 15, Apr. 2012, Art. no. 153119, doi: 10.1063/1.4704174.
[3.19] M.-F. Hung, Y.-C. Wu, and Z.-Y. Tang, "High-performance gate-all-around polycrystalline silicon nanowire with silicon nanocrystals nonvolatile memory," Appl. Phys. Lett., vol. 98, no. 16, Apr. 2011, Art. no. 162108, doi: 10.1063/1.3582925.
[3.20] F. Hou, P. Sung, F. Hsueh, C. Wu, Y. Lee, Y. Li, S. Samukawa, and T. Hou, "Suspended Diamond-Shaped Nanowire With Four {111} Facets for High-Performance Ge Gate-All-Around FETs," IEEE Transactions on Electron Devices, vol. 63, pp. 3837-3843, 2016. doi:10.1109/TED.2016.2597317.
[3.21] Y. Lee, F. Hou, S. Chuang, F. Hsueh, K. Kao, P. Sung, W. Yuan, J. Yao, Y. Lu, K. Lin, C. Wu, H. Chen, B. Chen, G. Huang, H. J. H. Chen, J. Li, Y. Li, S. Samukawa, T. Chao, T. Tseng, W. Wu, T. Hou, and W. Yeh, "Diamond-shaped Ge and Ge0.9Si0.1 gate-all-around nanowire FETs with four {111} facets by dry etch technology," in 2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp. 15.1.1-15.1.4. doi:10.1109/IEDM.2015.7409701.
[3.22] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistors without junctions," Nat. Nanotechnol., vol. 5, no. 3, pp. 225-229, Mar. 2010, doi: 10.1038/nnano.2010.15.
[3.23] L.-C. Chen, M.-S. Yeh, Y.-R. Lin, K.-W. Lin, M.-H. Wu, V. Thirunavukkarasu, and Y.-C. Wu, "The physical analysis on electrical junction of junctionless FET," AIP Adv., vol. 7, no. 2, p. 025301, Feb. 2017, doi: 10.1063/1.4975768.
[3.24] V. Thirunavukkarasu, Y.-R. Jhan, Y.-B. Liu, E. D. Kurniawan, Y. R. Lin, S.-Y. Yang, C.-H. Cheng, and Y.-C. Wu, "Gate-all-around junctionless silicon transistors with atomically thin nanosheet channel (0.65 nm) and record sub-threshold slope (43 mV/dec)," Appl. Phys. Lett., vol. 110, no. 3, Jan. 2017, Art. no. 032101, doi: 10.1063/1.4974255.
[3.25] M. J. Tsai, Y. Y. Chiang, Y. R. Lin, E. D. Kurniawan, and Y. C. Wu, “Hybrid N-Type Poly-Si Ultra-Thin Nanowire Shell Channel with P-Substrate Structure by Electron Beam Lithography Adjustment for Junctionless Field-Effect Transistors,” ECS J. Solid State Sci. Technol., 7, pp. 201-205, 2018, doi: 10.1149/2.0111811jss.
[3.26] Y. Cheng, H. Chen, C. Shao, J. Su, Y. Wu, C. Chang, and T. Chang, "Performance enhancement of a novel P-type junctionless transistor using a hybrid poly-Si fin channel," IEEE Int. Electron Devices Meet., 2014, pp. 26.7.1-26.7.4., doi: 10.1109/iedm.2014.7047116.
[3.27] K. Chen et al., "Ferroelectric HfZrOx FETs on SOI Substrate With Reverse-DIBL (Drain-Induced Barrier Lowering) and NDR (Negative Differential Resistance)," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 900-904, 2018, doi: 10.1109/JEDS.2018.2863283.
[3.28] K. Lee, S. Kim, J. Lee, D. Kwon and B. Park, "Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory," in IEEE Electron Device Letters, vol. 41, no. 8, pp. 1197-1200, Aug. 2020, doi: 10.1109/LED.2020.3000766.

Ch4 Reference
[4.1] H. Arimura, S. Sioncke, D. Cott, J. Mitard, T. Conard, W. Vanherle, R. Loo, P. Favia, H. Bender, J. Meersschaut, L. Witters, H. Mertens, J. Franco, L. Ragnarsson, G. Pourtois, M. Heyns, A. Mocuta, N. Collaert, and A. V. Thean, "Ge nFET with high electron mobility and superior PBTI reliability enabled by monolayer-Si surface passivation and La-induced interface dipole formation," in 2015 IEEE International Electron Devices Meeting (IEDM), 7-9 Dec. 2015, pp. 21.6.1-21.6.4, doi: 10.1109/IEDM.2015.7409752.
[4.2] H. Mertens, R. Ritzenthaler, H. Arimura, J. Franco, F. Sebaai, A. Hikavyy, B. J. Pawlak, V. Machkaoutsan, K. Devriendt, D. Tsvetanova, A. P. Milenin, L. Witters, A. Dangol, E. Vancoille, H. Bender, M. Badaroglu, F. Holsteyns, K. Barla, D. Mocuta, N. Horiguchi, and A. V. Thean, "Si-cap-free SiGe p-channel FinFETs and gate-all-around transistors in a replacement metal gate process: Interface trap density reduction and performance improvement by high-pressure deuterium anneal," in 2015 Symposium on VLSI Technology (VLSI Technology), 16-18 June 2015, pp. T142-T143, doi: 10.1109/VLSIT.2015.7223654.
[4.3] Apoorva, N. Kumar, S. I. Amin, and S. Anand, "Design and Performance Optimization of Novel Core–Shell Dopingless GAA-Nanotube TFET With Si0.5Ge0.5-Based Source," IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 789-795, 2020, doi: 10.1109/TED.2020.2965244.
[4.4] Q. Zhao, S. Richter, C. Schulte-Braucks, L. Knoll, S. Blaeser, G. V. Luong, S. Trellenkamp, A. Schäfer, A. Tiedemann, J. Hartmann, K. Bourdelle, and S. Mantl, "Strained Si and SiGe Nanowire Tunnel FETs for Logic and Analog Applications," IEEE Journal of the Electron Devices Society, vol. 3, no. 3, pp. 103-114, 2015, doi: 10.1109/JEDS.2015.2400371.
[4.5] W. Chang, H. Ota, and T. Maeda, "Gate-First High-Performance Germanium nMOSFET and pMOSFET Using Low Thermal Budget Ion Implantation After Germanidation Technique," IEEE Electron Device Letters, vol. 37, no. 3, pp. 253-256, 2016, doi: 10.1109/LED.2016.2523518.
[4.6] M. J. H. v. Dal, G. Vellianitis, G. Doornbos, B. Duriez, M. C. Holland, T. Vasen, A. Afzalian, E. Chen, S. K. Su, T. K. Chen, T. M. Shen, Z. Q. Wu, and C. H. Diaz, "Ge CMOS gate stack and contact development for Vertically Stacked Lateral Nanowire FETs," in 2018 IEEE International Electron Devices Meeting (IEDM), 1-5 Dec.2018, pp. 21.1.1-21.1.4, doi: 10.1109/IEDM.2018.8614577.
[4.7] A. Ritenour, J. Hennessy, and D. A. Antoniadis, "Investigation of Carrier Transport in Germanium MOSFETs With WN/Al2O3/AlN Gate Stacks," IEEE Electron Device Letters, vol. 28, no. 8, pp. 746-749, 2007, doi: 10.1109/LED.2007.901272.
[4.8] C. Chu, K. Wu, G. Luo, B. Chen, S. Chen, W. Wu, and W. Yeh, "Stacked Ge-Nanosheet GAAFETs Fabricated by Ge/Si Multilayer Epitaxy," IEEE Electron Device Letters, vol. 39, no. 8, pp. 1133-1136, 2018, doi: 10.1109/LED.2018.2850366.
[4.9] K. Seo, B. Haran, D. Gupta, D. Guo, T. Standaert, R. Xie, H. Shang, E. Alptekin, D. Bae, G. Bae, C. Boye, H. Cai, D. Chanemougame, R. Chao, K. Cheng, J. Cho, K. Choi, B. Hamieh, J. G. Hong, T. Hook, L. Jang, J. Jung, R. Jung, D. Lee, B. Lherron, R. Kambhampati, B. Kim, H. Kim, K. Kim, T. S. Kim, S. Ko, F. L. Lie, D. Liu, H. Mallela, E. Mclellan, S. Mehta, P. Montanini, M. Mottura, J. Nam, S. Nam, F. Nelson, I. Ok, C. Park, Y. Park, A. Paul, C. Prindle, R. Ramachandran, M. Sankarapandian, V. Sardesai, A. Scholze, S. Seo, J. Shearer, R. Southwick, R. Sreenivasan, S. Stieg, J. Strane, X. Sun, M. G. Sung, C. Surisetty, G. Tsutsui, N. Tripathi, R. Vega, C. Waskiewicz, M. Weybright, C. Yeh, H. Bu, S. Burns, D. Canaperi, M. Celik, M. Colburn, H. Jagannathan, S. Kanakasabaphthy, W. Kleemeier, L. Liebmann, D. Mcherron, P. Oldiges, V. Paruchuri, T. Spooner, J. Stathis, R. Divakaruni, T. Gow, J. Iacoponi, J. Jenq, R. Sampson, and M. Khare, "A 10nm platform technology for low power and high performance application featuring FINFET devices with multi workfunction gate stack on bulk and SOI," in 2014 Symposium on VLSI Technology, 9-12 June 2014, pp. 1-2, doi: 10.1109/VLSIT.2014.6894342.
[4.10] D. Guo, G. Karve, G. Tsutsui, K. Lim, R. Robison, T. Hook, R. Vega, D. Liu, S. Bedell, S. Mochizuki, F. Lie, K. Akarvardar, M. Wang, R. Bao, S. Burns, V. Chan, K. Cheng, J. Demarest, J. Fronheiser, P. Hashemi, J. Kelly, J. Li, N. Loubet, P. Montanini, B. Sahu, M. Sankarapandian, S. Sieg, J. Sporre, J. Strane, R. Southwick, N. Tripathi, R. Venigalla, J. Wang, K. Watanabe, C. W. Yeung, D. Gupta, B. Doris, N. Felix, A. Jacob, H. Jagannathan, S. Kanakasabapathy, R. Mo, V. Narayanan, D. Sadana, P. Oldiges, J. Stathis, T. Yamashita, V. Paruchuri, M. Colburn, A. Knorr, R. Divakaruni, H. Bu, and M. Khare, "FINFET technology featuring high mobility SiGe channel for 10nm and beyond," in 2016 IEEE Symposium on VLSI Technology, 14-16 June 2016, pp. 1-2, doi: 10.1109/VLSIT.2016.7573360.
[4.11] M. V. Fischetti and S. E. Laux, "Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys," Journal of Applied Physics, vol. 80, no. 4, pp. 2234-2252, 1996, doi: 10.1063/1.363052.
[4.12] C. Jeong, H. Park, S. Dhar, S. Park, K. Lee, S. Jin, W. Choi, U. Kwon, K. Lee, and Y. Park, "Physical understanding of alloy scattering in SiGe channel for high-performance strained pFETs," in 2013 IEEE International Electron Devices Meeting, 9-11 Dec. 2013, pp. 12.2.1-12.2.4, doi: 10.1109/IEDM.2013.6724614.
[4.13] T. Lee, K. Kato, M. Ke, M. Takenaka, and S. Takagi, "Improvement of SiGe MOS interface properties with a wide range of Ge contents by using TiN/Y2O3 gate stacks with TMA nassivation," in 2019 Symposium on VLSI Technology, 9-14 June 2019, pp. T100-T101, doi: 10.23919/VLSIT.2019.8776523.
[4.14] C. H. Lee, S. Mochizuki, R. G. Southwick, J. Li, X. Miao, R. Bao, T. Ando, R. Galatage, S. Siddiqui, C. Labelle, A. Knorr, J. H. Stathis, D. Guo, V. Narayanan, B. Haran, and H. Jagannathan, "A comparative study of strain and Ge content in Si1?xGex channel using planar FETs, FinFETs, and strained relaxed buffer layer FinFETs," in 2017 IEEE International Electron Devices Meeting (IEDM), 2-6 Dec. 2017, pp. 37.2.1-37.2.4, doi: 10.1109/IEDM.2017.8268509.
[4.15] C. H. Lee, R. G. Southwick, S. Mochizuki, J. Li, X. Miao, M. Wang, R. Bao, I. Ok, T. Ando, P. Hashemi, D. Guo, V. Narayanan, N. Loubet, and H. Jagannathan, "Toward High Performance SiGe Channel CMOS: Design of High Electron Mobility in SiGe nFinFETs Outperforming Si," in 2018 IEEE International Electron Devices Meeting (IEDM), 1-5 Dec. 2018, pp. 35.1.1-35.1.4, doi: 10.1109/IEDM.2018.8614581.
[4.16] G. Tsutsui, C. Durfee, M. Wang, A. Konar, H. Wu, S. Mochizuki, R. Bao, S. Bedell, J. Li, H. Zhou, D. Schmidt, C. J. Yang, J. Kelly, K. Watanabe, T. Levin, W. Kleemeier, D. Guo, D. Sadana, D. Gupta, A. Knorr, and H. Bu, "Leakage aware Si/SiGe CMOS FinFET for low power applications," in 2018 IEEE Symposium on VLSI Technology, 18-22 June 2018, pp. 87-88, doi: 10.1109/VLSIT.2018.8510639.
[4.17] M. J. H. v. Dal, N. Collaert, G. Doornbos, G. Vellianitis, G. Curatola, B. J. Pawlak, R. Duffy, C. Jonville, B. Degroote, E. Altamirano, E. Kunnen, M. Demand, S. Beckx, T. Vandeweyer, C. Delvaux, F. Leys, A. Hikavyy, R. Rooyackers, M. Kaiser, R. G. R. Weemaes, S. Biesemans, M. Jurczak, K. Anil, L. Witters, and R. J. P. Lander, "Highly manufacturable FinFETs with sub-10nm fin width and high aspect ratio fabricated with immersion lithography," in 2007 IEEE Symposium on VLSI Technology, 12-14 June 2007 2007, pp. 110-111, doi: 10.1109/VLSIT.2007.4339747.
[4.18] J. Kavalieros, B. Doyle, S. Datta, G. Dewey, M. Doczy, B. Jin, D. Lionberger, M. Metz, W. Rachmady, M. Radosavljevic, U. Shah, N. Zelick, and R. Chau, "Tri-Gate Transistor Architecture with High-k Gate Dielectrics, Metal Gates and Strain Engineering," in 2006 Symposium on VLSI Technology, 13-15 June 2006, pp. 50-51, doi: 10.1109/VLSIT.2006.1705211.
[4.19] T. Liow, K. Tan, R. Lee, A. Du, C. Tung, G. Samudra, W. Yoo, N. Balasubramanian, and Y. Yeo, "Strained N-Channel FinFETs with 25 nm Gate Length and Silicon-Carbon Source/Drain Regions for Performance Enhancement," in 2006 Symposium on VLSI Technology, 13-15 June 2006, pp. 56-57, doi: 10.1109/VLSIT.2006.1705214.
[4.20] Y. Ishii, Y. Lee, W. Wu, K. Maeda, H. Ishimura, and M. Miura, "Etch Control and SiGe Surface Composition Modulation by Low Temperature Plasma Process for Si/SiGe Dual Channel Fin Application," IEEE Journal of the Electron Devices Society, vol. 7, pp. 1277-1283, 2019, doi: 10.1109/JEDS.2019.2951360.
[4.21] D. Bae, G. Bae, K. K. Bhuwalka, S. Lee, M. Song, T. Jeon, C. Kim, W. Kim, J. Park, S. Kim, U. Kwon, J. Jeon, K. Nam, S. Lee, S. Lian, K. Seo, S. Lee, P. Jae Hoo, Y. Heo, M. S. Rodder, J. A. Kittl, Y. Kim, K. Hwang, D. Kim, M. Liang, and E. S. Jung, "A novel tensile Si (n) and compressive SiGe (p) dual-channel CMOS FinFET co-integration scheme for 5nm logic applications and beyond," in 2016 IEEE International Electron Devices Meeting (IEDM), 3-7 Dec. 2016, pp. 28.1.1-28.1.4, doi: 10.1109/IEDM.2016.7838496.
[4.22] H. Majima, H. Ishikuro, and T. Hiramoto, "Experimental evidence for quantum mechanical narrow channel effect in ultra-narrow MOSFET's," IEEE Electron Device Letters, vol. 21, no. 8, pp. 396-398, 2000, doi: 10.1109/55.852962.
[4.23] Sentaurus TCAD Version 2016, Synopsys, Mountain View, CA, USA.
[4.24] Geumjong Bae, D.-I. Bae, M.Kang, S.M.Hwang, S.S.Kim, B.Seo, T.Y.Kwon, T.J.Lee, C.Moon,Y.M.Choi, K.Oikawa, S.Masuoka, K.Y.Chun, S.H.Park, H.J.Shin, J.C.Kim, K.K.Bhuwalka,D.H.Kim, W.J. Kim, J.Yoo, H.Y.Jeon, M.S.Yang, S.-J.Chung, D.Kim, B.H.Ham, K.J.Park, W.D.Kim, S.H.Park, G.Song, Y.H.Kim, M.S.Kang, K.H.Hwang, C.-H.Park, J.-H.Lee, D.-W. Kim, S-M.Jung, H.K.Kang, "3nm GAA Technology featuring Multi-Bridge-Channel FET for Low Power and High Performance Applications," 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 28.7.1-28.7.4, doi: 10.1109/IEDM.2018.8614629.
[4.25] Y.M. Lee, M.H. Na, A. Chu, A. Young, T. Hook, L. Liebmann, E.J. Nowak, S.H. Baek, R. Sengupta, H. Trombley, and X. Miao, "Accurate performance evaluation for the horizontal nanosheet standard-cell design space beyond 7nm technology," 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 29.3.1-29.3.4, doi: 10.1109/IEDM.2017.8268474.
[4.26] S. Barraud, B. Previtali, C. Vizioz, J.-M. Hartmann, J. Sturm, J. Lassarre, C. Perrot, Ph. Rodriguez, V. Loup, A. Magalhaes-Lucas, R. Kies, G. Romano, M. Cassé, N. Bernier, A. Jannaud, A. Grenier, F. Andrieu., "7-Levels-Stacked Nanosheet GAA Transistors for High Performance Computing," 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2, doi: 10.1109/VLSITechnology18217.2020.9265025.
[4.27] A.Agrawal, S. Chouksey, W. Rachmady, S. Vishwanath, S. Ghose, M. Mehta, J. Torres1, A.A. Oni, X. Weng, H. Li, D. Merrill, M. Metz1, A. Murthy and J. Kavalieros, "Gate-All-Around Strained Si0.4Ge0.6 Nanosheet PMOS on Strain Relaxed Buffer for High Performance Low Power Logic Application," 2020 IEEE International Electron Devices Meeting (IEDM), 2020, pp. 2.2.1-2.2.4, doi: 10.1109/IEDM13553.2020.9371933.
[4.28] R. Ritzenthaler, H. Mertens, V. Pena, G. Santoro, A. Chasin, K. Kenis, K. Devriendt, G. Mannaert, H. Dekkers, A. Dangol, Y. Lin, S. Sun, Z.Chen, M. Kim, J. Machillot, J. Mitard, N. Yoshida, N. Kim, D. Mocuta, N. Horiguchi,"Vertically Stacked Gate-All-Around Si Nanowire CMOS Transistors with Reduced Vertical Nanowires Separation, New Work Function Metal Gate Solutions, and DC/AC Performance Optimization," 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 21.5.1-21.5.4, doi: 10.1109/IEDM.2018.8614528.
[4.29] E. Capogreco, H. Arimura, L. Witters, A. Vohra, C. Porret, R. Loo, A. De Keersgieter, E. Dupuy, D. Marinov, A. Hikavyy, F. Sebaai, G. Mannaert, L.-A. Ragnarsson, Y. K. Siew, C. Vrancken, A. Opdebeeck, J. Mitard, R. Langer, E. Altamirano Sanchez, F. Holsteyns, S. Demuynck, K. Barla, V. De Heyn, D. Mocuta, N. Collaert, N. Horiguchi , "High performance strained Germanium Gate All Around p-channel devices with excellent electrostatic control for sub-Jtlnm LG," 2019 Symposium on VLSI Technology, 2019, pp. T94-T95, doi: 10.23919/VLSIT.2019.8776558. (IEDM), 2016, pp. 19.7.1-19.7.4, doi: 10.1109/IEDM.2016.7838456.
[4.30] L. Mathew, M. Sadd, S. Kalpat, M. Zavala, T. Stephens, R. Mora, S. Bagchi, C. Parker, J. Vasek, D. Sing, R. Shimer, L. Prabhu, G.O. Workman, G. Ablen, Z.Shi, J.Saenz, B. Min, D. Burnett, B.-Y. Nguyen, J. Mogab., M.M. Chowdhury, W. Zhang, J.G. Fossum, "Inverted T channel FET (ITFET) - Fabrication and characteristics of vertical-horizontal, thin body, multi-gate, multi-orientation devices, ITFET SRAM bit-cell operation. A novel technology for 45nm and beyond CMOS.," IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., 2005, pp. 713-716, doi: 10.1109/IEDM.2005.1609452.
[4.31] W. Zhang, J. G. Fossum and L. Mathew, "The ITFET: A Novel FinFET-Based Hybrid Device," in IEEE Transactions on Electron Devices, vol. 53, no. 9, pp. 2335-2343, Sept. 2006, doi: 10.1109/TED.2006.880813.
[4.32] Daewoong Kwon, Korok Chatterjee, Ava J. Tan, Ajay K. Yadav, Hong Zhou, Angada B. Sachid, Roberto dos Reis, Chenming Hu, and Sayeef Salahuddin, "Improved Subthreshold Swing and Short Channel Effect in FDSOI n-Channel Negative Capacitance Field Effect Transistors," in IEEE Electron Device Letters, vol. 39, no. 2, pp. 300-303, Feb. 2018, doi: 10.1109/LED.2017.2787063.
[4.33] Meng-Ju Tsai, Pin-Jui Chen, Chieng-Chung Hsu, Dun-Bao Ruan, Fu-Ju Hou, Po-Yang Peng, and Yung-Chun Wu, "Atomic-Level Analysis of Sub-5-nm-Thick Hf0.5Zr0.5O2 and Characterization of Nearly Hysteresis-Free Ferroelectric FinFET," in IEEE Electron Device Letters, vol. 40, no. 8, pp. 1233-1236, Aug. 2019, doi: 10.1109/LED.2019.2922239.
[4.34] Masaharu Kobayashi, "A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor," in Appl. Phys. Express, 11 110101 (2018), https://doi.org/10.7567/APEX.11.110101.
[4.35] Lun Xu, Tomonori Nishimura, Shigehisa Shibayama, Takeaki Yajima, Shinji Migita, and Akira Toriumi, "Kinetic pathway of the ferroelectric phase formation in doped HfO2 films", Journal of Applied Physics 122, 124104 (2017) https://doi.org/10.1063/1.5003918
[4.36] Yi-Wen Lin, Chong-Jhe Sun, Hao-Hsiang Chang, Yu-Hsien Huang, Tung-Yuan Yu, Yung-Chun Wu, and Fu-Ju Hou, "Self-induced ferroelectric 2-nm-thick Ge-doped HfO2 thin film applied to Ge nanowire ferroelectric gate-all-around field-effect transistor", Applied Physics Letters 117, 262109 (2020) https://doi.org/10.1063/5.0029628
[4.37] J. Huang, P. D. Kirsch, J. Oh, S.H. Lee, J. Price, P. Majhi, H.R. Harris, D. C. Gilmer, D. Q. Kelly, P. Sivasubramani, G. Bersuker, D. Heh, C. Young, C.S. Park, Y. N. Tan, N. Goel, C. Park, P.Y. Hung, P. Lysaght, K. J. Choi, B. J. Cho, H.-H. Tseng, B .H. Lee, and R. Jammy, "Mechanisms limiting EOT scaling and gate leakage currents of high-k/metal gate stacks directly on SiGe and a method to enable sub-1nm EOT," 2008 Symposium on VLSI Technology, 2008, pp. 82-83, doi: 10.1109/VLSIT.2008.4588571.
[4.38] Sung-Young Lee, Sung-Min Kim, Eun-Jung Yoon, Chang-Woo Oh, Ilsub Chung, Donggun Park, and Kinam Kim, "A novel multibridge-channel MOSFET (MBCFET): fabrication technologies and characteristics," in IEEE Transactions on Nanotechnology, vol. 2, no. 4, pp. 253-257, Dec. 2003, doi: 10.1109/TNANO.2003.820777.
[4.39] Chong-Jhe Sun, Meng-Ju Tsai, Siao-Cheng Yan, Tzu-Ming Chu, Chieng-Chung Hsu, Chun-Lin Chu, Guang-Li Luo, and Yung-Chun Wu, "Low Ge Content Ultra-Thin Fin Width (5nm) Monocrystalline SiGe n-Type FinFET With Low Off State Leakage and High ION/IOFF Ratio," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 1016-1020, 2020, doi: 10.1109/JEDS.2020.3023953.
[4.40] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder and U. Böttger, "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors," 2011 International Electron Devices Meeting, 2011, pp. 24.5.1-24.5.4, doi: 10.1109/IEDM.2011.6131606.
[4.41] J.F. Moulder, P.E. Sobol, W.F. Stickle, “Handbook of X-ray photoelectron spectroscopy”, Physical Electronics Inc., Eden Prairie, MN, 1995, pp. 33
[4.42] Gang He, Jiwen Zhang, Zhaoqi Sun, Jianguo Lv, Hanshuang Chen, and Mao Liu , "Evolution of interface chemistry and dielectric properties of HfO2/Ge gate stack modulated by Gd incorporation and thermal annealing", AIP Advances 6, 025003 (2016) https://doi.org/10.1063/1.4941698
[4.43] O. Renault, L. Fourdrinier, E. Martinez, L. Clavelier, and C. Leroyer, "High-resolution photoelectron spectroscopy of Ge-based HfO2 gate stacks", Appl. Phys. Lett. 90, 052112 (2007) https://doi.org/10.1063/1.2435512
[4.44] C. Jin, T. Saraya, T. Hiramoto and M. Kobayashi, "On the Physical Mechanism of Transient Negative Capacitance Effect in Deep Subthreshold Region," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 368-374, 2019, doi: 10.1109/JEDS.2019.2899727.

Ch5 Reference
[5.1] Huang, C.-Y.; Dewey, G.; Mannebach, E.; Phan, A.; Morrow, P.; Rachmady, W.; Tung, I.-C.; Thomas, N.; Alaan, U.; Paul, R.; et al. 3-D Self-aligned Stacked NMOS-on-PMOS Nanoribbon Transistors for Continued Moore’s Law Scaling. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 20.6.1–20.6.4. https://doi.org/10.1109/iedm13553.2020.9372066.
[5.2] Ryckaert, J.; Schuddinck, P.; Weckx, P.; Bouche, G.; Vincent, B.; Smith, J.; Sherazi, Y.; Mallik, A.; Mertens, H.; Demuynck, S.; et al. The Complementary FET (CFET) for CMOS scaling beyond N3. In Proceedings of the 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018; pp. 141–142. https://doi.org/10.1109/vlsit.2018.8510618.
[5.3] Subramanian, S.; Hosseini, M.; Chiarella, T.; Sarkar, S.; Schuddinck, P.; Chan, B.T.; Radisic, D.; Mannaert, G.; Hikavyy, A.; Rosseel, E.; et al. First Monolithic Integration of 3D Complementary FET (CFET) on 300mm Wafers. In Proceedings of the 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2. https://doi.org/10.1109/vlsitechnology18217.2020.9265073.
[5.4] Rachmady, W.; Agrawal, A.; Sung, S.H.; Dewey, G.; Chouksey, S.; Chu-Kung, B.; Elbaz, G.; Fischer, P.; Huang, C.Y.; Jun, K.; et al. 300mm Heterogeneous 3D Integration of Record Performance Layer Transfer Germanium PMOS with Silicon NMOS for Low Power High Performance Logic Applications. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 29.7.1–29.7.4.
[5.5] Ragnarsson, L.Å.; Chew, S.A.; Dekkers, H.; Luque, M.T.; Parvais, B.; De Keersgieter, A.; Devriendt, K.; Van Ammel, A.; Schram, T.; Yoshida, N.; et al. Highly scalable bulk FinFET Devices with Multi-VT options by conductive metal gate stack tuning for the 10-nm node and beyond. In Proceedings of the 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, USA, 9–12 June 2014; pp. 1–2. https://doi.org/10.1109/vlsit.2014.6894359.
[5.6] Ragnarsson, L.-A.; Dekkers, H.; Matagne, P.; Schram, T.; Conard, T.; Horiguchi, N.; Thean, A.V.-Y. Zero-thickness multi work function solutions for N7 bulk FinFETs. In Proceedings of the 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA , 14–16 June 2016; pp. 1–2. https://doi.org/10.1109/vlsit.2016.7573393.
[5.7] Yoshida, N.; Hassan, S.; Tang, W.; Yang, Y.; Zhang, W.; Chen, S.C.; Dong, L.; Zhou, H.; Jin, M.; Okazaki, M.; et al. Highly conductive metal gate fill integration solution for extremely scaled RMG stack for 5 nm & beyond. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 22.2.1–22.2.4. https://doi.org/10.1109/iedm.2017.8268439.
[5.8] Ritzenthaler, R.; Mertens, H.; Pena, V.; Santoro, G.; Chasin, A.; Kenis, K.; Devriendt, K.; Mannaert, G.; Dekkers, H.; Dangol, A.; et al. Vertically Stacked Gate-All-Around Si Nanowire CMOS Transistors with Reduced Vertical Nanowires Separation, New Work Function Metal Gate Solutions, and DC/AC Performance Optimization. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 21.5.1–21.5.4. https://doi.org/10.1109/iedm.2018.8614528.
[5.9] Sung, P.-J.; Chang, S.-W.; Kao, K.-H.; Wu, C.-T.; Su, C.-J.; Cho, T.-C.; Hsueh, F.-K.; Lee, W.-H.; Lee, Y.-J.; Chao, T.-S. Fabrication of Vertically Stacked Nanosheet Junctionless Field-Effect Transistors and Applications for the CMOS and CFET Inverters. IEEE Trans. Electron Devices 2020, 67, 3504–3509. https://doi.org/10.1109/ted.2020.3007134.
[5.10] Bao, R.; Watanabe, K.; Zhang, J.; Zhou, H.; Sankarapandian, M.; Li, J.; Pancharatnam, S.; Jamison, P.; Southwick, R.G.; Wang, M.; et al. Selective Enablement of Dual Dipoles for near Bandedge Multi-Vt Solution in High Performance FinFET and Nanosheet Technologies. In Proceedings of the 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2. https://doi.org/10.1109/vlsitechnology18217.2020.9265010.
[5.11] Xu, R.; Yao, J.; Xu, G.; Wei, Y.; Yin, H.; Zhang, Q.; Tian, G.; Wang, Y.; Yan, G.; Xiang, J.; et al. Experimental Investigation of Ultrathin Al₂O₃ Ex-Situ Interfacial Doping Strategy on Laminated HKMG Stacks via ALD. IEEE Trans. Electron Devices 2022, 69, 1964–1971. https://doi.org/10.1109/ted.2022.3152976.
[5.12] Kumar, P.; Leroux, C.; Mohamad, B.; Toffoli, A.; Romano, G.; Garros, X.; Reimbold, G.; Domengie, F.; Segovia, C.S.; Ghibaudo, G. Effect of La and Al addition used for threshold voltage shift on the BTI reliability of HfON-based FDSOI MOSFETs. In Proceedings of the 2017 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2–6 April 2017; pp. 2B-2.1–2B-2.7. https://doi.org/10.1109/irps.2017.7936258.
[5.13] Arimura, H.; Ragnarsson, L.-A.; Oniki, Y.; Franco, J.; Vandooren, A.; Brus, S.; Leonhardt, A.; Sippola, P.; Ivanova, T.; Verni, G.A.; et al. Dipole-First Gate Stack as a Scalable and Thermal Budget Flexible Multi-Vt Solution for Nanosheet/CFET Devices. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 13.5.1–13.5.4. https://doi.org/10.1109/iedm19574.2021.9720527.
[5.14] Thompson, S.; Armstrong, M.; Auth, C.; Alavi, M.; Buehler, M.; Chau, R.; Cea, S.; Ghani, T.; Glass, G.; Hoffman, T.; et al. A 90-nm Logic Technology Featuring Strained-Silicon. IEEE Trans. Electron Devices 2004, 51, 1790–1797. https://doi.org/10.1109/ted.2004.836648.
[5.15] Harris, H.R.; Kalra, P.; Majhi, P.; Hussain, M.; Kelly, D.; Oh, J.; He, D.; Smith, C.; Barnett, J.; Kirsch, P.D.; et al. Band-Engineered Low PMOS VT with High-K/Metal Gates Featured in a Dual Channel CMOS Integration Scheme. In Proceedings of the 2007 IEEE Symposium on VLSI Technology, Kyoto, Japan, 12–14 June 2007; pp. 154–155. https://doi.org/10.1109/vlsit.2007.4339763.
[5.16] Guo, D.; Karve, G.; Tsutsui, G.; Lim, K.-Y.; Robison, R.; Hook, T.; Vega, R.; Liu, D.; Bedell, S.; Mochizuki, S.; et al. FINFET technology featuring high mobility SiGe channel for 10nm and beyond. In Proceedings of the 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 14–16 June 2016; pp. 1–2. https://doi.org/10.1109/vlsit.2016.7573360.
[5.17] Lee, C.H.; Mochizuki, S.; Southwick, R.G.; Li, J.; Miao, X.; Bao, R.; Ando, T.; Galatage, R.; Siddiqui, S.; Labelle, C.; et al. A comparative study of strain and Ge content in Si1−xGex channel using planar FETs, FinFETs, and strained relaxed buffer layer FinFETs. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 37.2.1–37.2.4. https://doi.org/10.1109/iedm.2017.8268509.
[5.18] Sentaurus TCAD, version 2016; Synopsys: Mountain View, CA, USA, 2016.
[5.19] International Roadmap for Devices and Systems (IRDS™), IRDS, 2020. Available online: https://irds.ieee.org/editions/2020 (accessed on 23 July 2020).
[5.20] Ancona, M.G.; Tiersten, H.F. Macroscopic physics of the silicon inversion layer. Phys. Rev. B 1987, 35, 7959–7965. https://doi.org/10.1103/physrevb.35.7959.
[5.21] Slotboom, J.; de Graaff, H. Measurements of bandgap narrowing in Si bipolar transistors. Solid State Electron. 1976, 19, 857–862. https://doi.org/10.1016/0038-1101(76)90043-5.
[5.22] Levinshtein, M.E.; Rumyantsev, S.L.; Michael, S.S. Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiC, SiGe; John Wiley & Sons, Inc.: New York, NY, USA, 2001; pp. 149–185.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *