帳號:guest(3.139.105.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳維陞
作者(外文):Wu, Wei-Sheng
論文名稱(中文):電沈積高活性鉑觸媒於奈米碳管載體應用於質子交換膜燃料電池電極之製程優化
論文名稱(外文):Optimized Fabrication Process for High Catalytic Activity Pt Electrodeposited on Carbon Nanotubes for PEMFC Electrodes
指導教授(中文):葉宗洸
指導教授(外文):Yeh, Tsung-Kuang
口試委員(中文):薛康琳
曾繁根
口試委員(外文):Hsueh, Kan-Lin
Tseng, Fan-Gang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011539
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:64
中文關鍵詞:質子交換膜燃料電池高催化活性電化學沈積法電極面積放大
外文關鍵詞:proton exchange membrane fuel cellhigh catalytic activityelectrodepositionelectrode scale-up
相關次數:
  • 推薦推薦:0
  • 點閱點閱:791
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
本研究藉由調控電鍍製程之輔助電解質種類、分散劑濃度、前驅物濃度、脈衝式電沈積循環次數,以及基材親水前處理之循環次數,作為優化鉑觸媒的手段。我們使用熱化學沈積法在氣體擴散層表面成長奈米碳管,作為觸媒之基材。經過優化後的觸媒,可在1 x 1 cm2的電極面積中,得到最佳之電池輸出功率為817 mW/cm2;搭配ICP-MS結果可以得知在1 x 1 cm2的電極面積上,鉑觸媒的承載量為1.04 mg,其單位質量之鉑觸媒輸出功率為785 mW/mgPt。此一優化後的觸媒擁有較高的催化活性,較商用觸媒相比展現較少之活性極化過電位,並且在單電池之單位電極面積輸出功率高於商用觸媒電池。
在電極面積放大的電鍍製程中,我們將根據1 x 1 cm2電極面積的電鍍製備參數進行2 x 2 cm2的電鍍製程優化研究。在優化電沈積製備參數以及單電池測試條件後,目前2 x 2 cm2電極面積的最佳化參數可得到最佳之電池輸出功率為780 mW/cm2。
In this research, Pt catalysts were improved by conditioning the species of supporting electrolyte, the molarity of precursor, the adding of disperser, the repeat cycle count of pulse-potential for Pt deposition process and the cycle count of hydrophilic pretreatment. At electrode area of 1 x 1 cm2, the Pt loading was 1.04 mg/cm2, and we gained the 817 mW of power output from a single cell after the optimization of fabrication process. Compared to the commercial catalysts, the homemade electrodeposition catalysts had higher catalytic activity and caused less activation polarization.
For electrode area of 2 x 2 cm2, we optimized the Pt electrodeposition process and the condition of single cell test, the best power output was 780 mW/cm2.
摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 燃料電池簡介與種類 4
2.2 質子交換膜燃料電池 4
2.2.1 氣體擴散層與觸媒載體 6
2.2.2 觸媒層 6
2.2.3 質子交換膜 7
2.3 奈米碳管 8
2.4 電化學分析 9
2.4.1 參考電極 10
2.4.2 循環伏安法 (Cyclic voltammetry, CV) 11
2.4.3 極化掃描 (Linear sweep voltammetry, LSV) 12
2.5 電化學沈積法製備鉑觸媒 13
2.6 全電池極化損失 14
2.6.1 燃料穿透損失 14
2.6.2 活性極化損失 15
2.6.3 歐姆極化損失 16
2.6.4 濃度極化損失 16
第三章 研究方法與實驗步驟 18
3.1 實驗藥品與設備 18
3.2 實驗流程 20
3.3 觸媒載體 – 奈米碳管製備 20
3.4 電化學系統 22
3.5 觸媒載體前處理 (CNT pretreatment) 22
3.6 觸媒製備 23
3.7 觸媒檢測與分析 23
3.7.1 硫酸測試 23
3.7.2 形貌分析 23
3.7.3 晶體分析 24
3.7.4 觸媒沉積量分析 25
3.8 單電池測試 25
第四章 結果與討論 29
4.1 觸媒載體 29
4.2 輔助電解質對於鉑觸媒製備之效應 30
4.3 電沉積鉑觸媒製程參數對於鉑觸媒催化能力之效應 36
4.3.1 分散劑濃度效應 36
4.3.2 脈衝式電沈積循環次數效應 37
4.3.3 前驅物濃度效應 39
4.4 觸媒載體親水前處理程度對於鉑觸媒電沉積製程之效應 42
4.5 觸媒特性、結晶與結構分析 46
4.5.1 觸媒承載量分析 46
4.5.2 觸媒結構分析 46
4.5.3 全電池極化測試 — 自製觸媒電極 v.s. 商用觸媒電極 50
4.6 電極製程面積放大對於全電池功率輸出之效應 51
4.6.1 電極面積放大對觸媒形貌與分佈之影響 51
4.6.2 電極面積放大對觸媒結晶性與承載量影響 52
4.6.3 電極面積放大對全電池輸出功率影響 54
4.7 參數再現性 55
4.8 單電池測試條件對電池輸出功率之效應 56
4.9 觸媒長效測試 58
第五章 結論 60
參考資料 62
[1] 鼎佳能源股份有限公司 – 客戶實績,https://toplus-e.com.tw/
[2] B. K. Hong, S. H. Kim, “Recent advances in fuel cell electric vehicle technologies of Hyundai,” ECS Transactions, 86, 3-11 (2018)
[3] Hyundai Motor America, https://www.hyundaiusa.com/us/en/vehicles/nexo/compare-specs/
[4] Toyota Motor Corporation, https://toyota.jp/mirai/feature/
[5] Mercedes-Benz Japan, https://www.mercedes-benz.co.jp/passengercars/mercedes-benz-cars/models/glc/glc-suv/glc-f-cell/nba-glc-suv.module.html
[6] Hyundai Motor Europe, https://www.hyundai.news/eu/brand/hyundai-xcient-fuel-cell-heads-to-europe-for-commercial-use/
[7] Hyundai Motor Company – Eco-Friendly Research Technology, http://trucknbus.hyundai.com/global/en/eco/eco-friendly-research-technology#fcev_cont
[8] 陳柏璋,「脈衝式電鍍法製備之新穎奈米結構鉑觸媒應用於高效能質子交換膜燃料電池」,國立清華大學工程與系統科學系,碩士論文,中華民國一〇五年。
[9] 胡欣儀,「利用電化學沉積法於奈米碳管上製備高濃度鉑奈米顆粒並應用於質子交換膜燃料電池陽極端之研究」,國立清華大學工程與系統科學系,碩士論文,中華民國一〇五年
[10] J. Larminie, A. Dicks, edited by J. Wiley, Fuel Cell Systems Explained 2nd, John Wiley & Sons Ltd, 2003
[11] 王錫福,邱善得,薛康琳,蔡松雨,「新能源關鍵材料」,全華,中華民國一〇二年
[12] Y. J. Wang, N. Zhao, B. Fang, H. Li, X. T. Bi, H. Wang, “Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity,” Chem. Rev., 115(9), 3433-3467 (2015)
[13] W. Vielstich, A. Lamm, H. A. Gastegler, Handbook of Fuel Cells: Fundamentals, technology and Applications, USA, 2003.
[14] H. Y. Du, C. H. Wang, H. C. Hsu, S. T. Chang, S. C. Yen, L. C. Chen, B. Viswanathan, K. H. Chen, “High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell”, J. Mater. Chem., 21, 2512-2516 (2011)
[15] X. Chem, N. Li, K. Eckhard, L. Stoica, W. Xia, J. Assmann, M. Muhler, W. Schuhmann, “Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes”, Electrochemistry Communications, 9, 1348-1354 (2007)
[16] L. Wang, S. Bliznakov, R. Isseroff, Y. Zhou, X. Zuo, A. Raut, W. Wang, M. Cuiffo, T. Kim, M. H. Rafailovich, “Enhancing proton exchange membrane fuel cell performance via graphene oxide surface synergy”, Applied Energy, 261, 114277 (2020)
[17] D. He, H. Tang, Z. Kou, M. Pan, X. Sun, J. Zhang, S. Mu, “Engineered graphene materials: synthesis and applications for polymer electrolyte membrane fuel cells”, Adv. Mater., 29, 1601741 (2017)
[18] M. C. Tsai, T. K. Yeh, C. H. Tsai, “Methanol oxidation efficiencies on carbon-nanotube-supported platinum and platinum-ruthenium nanoparticles prepared by pulsed electrodeposition”, International Journal of Hydrogen Energy, 36, 8261-8266 (2011)
[19] Y. Y. Rivera-Lugo, K. I. Pérez-Muñoz, B. Trujillo-Navarrete, C Silva-Carrillo, E. A. Reynoso-Soto, J. C. C. Yañez, S. W. Lin, J. R. Flores-Hernández, R. M. Félix-Navarro, “PtPd hybrid composite catalysts as cathodes for proton exchange membrane fuel cells”, Energies, 13, 316, (2020)
[20] T. Y. Jeon, S. K. Kim, N. Pinna, A. Sharma, J. Park, S. Y. Lee, H. C. Lee, S. W. Kang, H. K. Lee, H. H. Lee, “Selective dissolution of surface nickel close to platinum in PtNi nanocatalyst toward oxygen reduction reaction”, Chem. Mater., 28, 1879-1887 (2016)
[21] A. Egetenmeyer, I. Radev, D. Durneata, M. Baumgärtner, V. Peinecke, H. Natter, R. Hempelmann, “Pulse electrodeposited cathode catalyst layers for PEM fuel cells”, International Journal of Hydrogen Energy, 42, 13649-13660 (2017)
[22] T. Y. Chen, S. T. Chang, C. W. Hu, Y. F. Liao, Y. J. Sue, Y. Y. Hsu, K. W. Wang, Y. T. Liu, “Self-aligned synthesis of a NiPt-alloycore@Ptshell nanocrystal with contrivable heterojunction structure and oxygen reduction activity”, Cryst. Eng. Comm., 18, 5860-5868 (2016)
[23] 泰新能源,http://www.tension.com.tw/
[24] P. J. F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, New York, 2009.
[25] 成會明,「奈米碳管」,五南,中華民國九十三年。
[26] 胡啟章,「電化學原理與方法」,五南,中華民國一〇五年。
[27] A. J. Bard, L. R. Faulkner, edited by J. Wiley, Electrochemical Methods 2nd, John Wiley & Sons Ltd, 2000.
[28] A. Kowal, K. Doblhofer, S. Krause, G. Weinberg, “Mechanism of cathodic PtCl62- reduction to platinum clusters on electrodes coated with polyvinylpyridinium films,” Journal of Applied Electrochemistry, 17, 1246-1253 (1987)
[29] P. Dhanasekaran, K. Lokesh, P. K. Ojha, A. K. Sahu, S. D. Bhat, D. Kalpana, “Electrochemical deposition of three-dimensional platinum nanoflowers for high-performance polymer electrolyte fuel cells,” Journal of Colloid and Interface Science, 572, 198-206 (2020)
[30] H. Jeon, J. Joo, Y. Kwon, S. Uhm, J. Lee, “Morphological features of electrodeposited Pt nanoparticles and its application as anode catalysts in polymer electrolyte formic acid fuel cells,” Journal of Power Sources, 195, 5929-5933 (2010)
[31] 汪建民,「材料分析」,中國材料科學學會,中華民國一〇三年。
[32] 江政鉉,「利用電化學沈積法直接於微孔層上製備商用尺寸質子交換膜燃料電池之奈米鉑觸媒」,國立清華大學工程與系統科學系,碩士論文,中華民國一〇八年。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *