帳號:guest(3.145.48.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉浩翔
作者(外文):Liu, Hao-Xiang
論文名稱(中文):可撓曲嵌入式應變感測器的設計與三維複合結構列印
論文名稱(外文):Design and 3D Printing of Flexible Conductive Composites as Embedded Sensors
指導教授(中文):蘇育全
指導教授(外文):Su, Yu-Chuan
口試委員(中文):陳宗麟
陳紹文
口試委員(外文):Chen, Tsung-Lin
Chen, Shao-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011535
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:72
中文關鍵詞:三維列印複合材料導電高分子電阻式應變感測器
外文關鍵詞:3D-printingComposite materialConductive polymerResistive strain sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:219
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗利用柔軟且可以高度拉伸的導電材料和金屬複合製成可穿戴的智能電子設備。例如,可撓曲電阻式感測器對於包括人體運動檢測,健康監測和軟機器人在內的新興應用至關重要。然而,軟導電結構的製程通常是昂貴且費時的,並且其結構的感測性能通常較差。本實驗目的是研發出更快速的製程,以製造出兼具柔韌性和導電性的圖案化導電複合材料。更具體地說,本實驗採用了DLP(數字光處理)立體光刻技術可根據所需選擇性地固化銀和聚吡咯複合膜,並為軟機器人構建集成的應變傳感器。
使用1920×1080像素的高分辨率微鏡陣列投光器動態投影出復合銀和聚吡咯結構的光圖案化圖像。作為應變傳感器的軟導電結構,其快速製造方案基於(1)
光可圖案化樹脂的配方,(2)高度可拉伸的彈性體結構的形成,(3)動態曝光的曝光以及(4)集成和協同作用。首先,自由基光起始劑產生光裂解反應將銀離子還原為均勻沉積在基材上的納米粒子。為了加速銀線和電極的沉積,將具有圖案化納米粒子基板浸入顯影劑中,讓顯影劑中的銀粒子快速還原成長為連續結構。同時,吡咯可以用陽離子光起始劑氧化並在彈性體結構上聚合成所需的聚吡咯圖案。另外,包含硝酸銀可加速氧化並有效地增加沉積圖案的電導率。另外,包含硝酸銀可加速氧化並放大沉積圖案的電導率。而本實驗製造了嵌入式和高度可拉伸式的兩種應變感測器。並發現銀-聚吡咯複合結構的電阻率與其伸長成比例地增加。實現了具有規律性可預期的感測性能並可以透過光照圖案化的導電結構的快速製造方案。
Soft and stretchable conductive materials are highly demanded for the implement of integrated, wearable, and intelligent electronic devices. For example, resistive-type flexible sensors are critical for emerging applications including human motion detection, health monitoring, and soft robotics. However, the manufacturing of soft conductive structures is usually costly and time-consuming, and the sensing properties of resulting structures are normally poor. The goals of this thesis is to develop rapid manufacturing schemes that realize photo-patternable conductive composites with desirable flexibility and electrical conductivity. More specifically, DLP (digital light processing) stereolithography is employed to selectively cure silver and poly-pyrrole composite film on demand, and to build integrated strain sensors for soft robotics.
A high-resolution light projector based on a 1920×1080 micromirror array, is used to dynamically generate the images for photo-patterning of composite silver and poly-pyrrole structures. The rapid manufacturing schemes for soft conductive structures functioning as strain sensors are based on (1) formulation of photo-patternable resins, (2) forming of highly stretchable elastomeric structures, (3) dynamically evolving light exposure, and (4) integration and synergy. First of all, photo-cleavage of free-radical photoinitiators reduces silver ions into nanoparticles that evenly deposit on a substrate. To accelerate the deposition of silver wires and electrodes, the substrate with patterned nanoparticles is immersed in a developer to rapidly grow separate silver particles into a continuous structure. Meanwhile, pyrrole can be oxidized with cationic photo-initiators and polymerized into desired polypyrrole patterns on an elastomeric structures. In addition, the inclusion of silver nitrate accelerates the oxidation and amplifies electrical conductivity of deposited patterns. In the prototype demonstration, embedded and highly stretchable strain sensors are fabricated. It is found that the resistivity of a silver-polypyrrole composite structure increases proportionally with its elongation. As such, rapid manufacturing schemes that realize photo-patternable conductive structures with desirable sensing performance can potentially be accomplished.
摘要 iii
目錄 iv
第一章、 緒論 1
1.1.前言 1
1.2.複合材料 2
1.2.1. 複合材料特性與應用 2
1.2.2. 高分子-金屬奈米複合材料 3
1.3.三維列印技術 3
1.3.1 三維列印技術種類 4
1.3.2 光固化三維列印工作原理 4
1.4 光化學反應 5
1.4.1自由基型光聚合反應 5
1.4.2 陽離子型光聚合反應 7
1.4.3 光誘導金屬奈米粒子還原反應 7
1.5 微型感測器 7
1.5.1高分子感測器 7
1.5.2電阻式與電容式應變感測器 8
1.6 仿生軟性機器人(機械手臂) 9
1.7研究動機與目的 10
第二章、 文獻回顧 12
2.1高分子基質中的銀納米顆粒 12
2.1.1 奈米銀粒子特徵 12
2.1.2 光合成奈米銀機制 13
2.1.3奈米銀成核與成長過程 14
2.1.4劑量(Dose)對銀還原反應影響 15
2.1.5 高分子/奈米金屬複合材料 17
2.1.6 顯影劑介紹 22
2.2 彈性高分子聚合物 24
2.2.1 單體(monomer) 24
2.2.2 交聯劑(Cross-linking agent) 25
2.2.3 光起始劑(photo-initiator) 25
2.3 導電高分子 26
2.3.1 導電高分子介紹(Conductive polymer) 26
2.3.2 導電高分子導電特性 27
2.3.3 導電高分子應用 30
2.4 導電高分子感測器 30
2.5 三維列印軟性機械手臂 32
第三章、 實驗原理與設計 35
3.1 製程與量測機台介紹 35
3.1.1 DLP 三維列印機 35
3.1.2 DLP光固化製造流程 36
3.1.3 推拉力測試機台/螺旋機架 37
3.1.4其他實驗儀器與設備 38
3.2 實驗材料介紹 39
3.2.1 導電高分子成分規格 40
3.2.2 彈性體成分規格 41
3.2.3 銀導線還原液成分規格 42
3.2.4 銀導線顯影液成分規格 43
3.3 兩階段光誘導銀膜導線製程 44
3.3.1 兩階段光誘導銀膜導線製程原理 44
3.3.2 銀成核過程 44
3.3.3 銀成長過程 45
3.3.4 兩階段銀膜導線製程設計 47
3.4 導電-彈性高分子感測器製程 48
3.4.1彈性高分子拉伸測試 48
3.4.2 導電高分子加速聚合測試 49
3.4.3導電-彈性高分子光固化列印 50
3.5 拉伸應變感測器設計與製作 51
3.5.1拉伸應變感測器設計 51
3.5.2拉伸應變感測器製程 52
3.6 嵌入式應變感測器設計與製作 53
3.6.1 嵌入式應變感測器設計 53
3.6.2 嵌入式應變感測器製程 54
第四章、 實驗結果與討論 56
4.1 銀膜導線 56
4.1.1 銀膜導線與高分子附著力 56
4.1.2 酸鹼值對銀膜導線生成關係 57
4.1.3 成核時間對銀膜導線生成關係 58
4.1.4溫度對銀膜導線生成關係 59
4.2 拉伸應變感測器 60
4.2.1 拉伸測試 61
4.2.2 拉伸與電阻變化關係 63
4.3 嵌入式應變感測器 63
4.3.1 彎曲與電阻變化關係 64
4.3.2 感測器響應頻率 65
第五章、 結論 66
5.1 DLP光誘導金屬列印 66
5.2 DLP導電高分子列印 67
5.3 感測器整合 67
第六章、 未來建議 68
6.1 銀膜導線與導電高分子製程優化改良 68
6.2 奈米銀-高分子複合材料應用端開發 68
參考文獻 69

Rajan, Krishna, et al. "Silver nanoparticle ink technology: state of the art." Nanotechnology, science and applications 9 (2016): 1.
Wikipedia contributors. "3D printing." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 22 Aug. 2020. Web. 24 Aug. 2020.
“https://ir.nctu.edu.tw/bitstream/11536/79241/8/552308.pdf” .
Amjadi, Morteza, et al. "Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review." Advanced Functional Materials 26.11 (2016): 1678-1698.
“https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&cat2=10&id=0000544013_HXO1R28S0JN4EX41G4XXI,”
Razza, Nicolò, et al. "UV‐Printable and Flexible Humidity Sensors Based on Conducting/Insulating Semi‐Interpenetrated Polymer Networks." Macromolecular Materials and Engineering 302.10 (2017): 1700161.
Scott, Robert WJ, Orla M. Wilson, and Richard M. Crooks. "Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles." (2005): 692-704.
McClements, David Julian, and Hang Xiao. "Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles." npj Science of Food 1.1 (2017): 1-13.
Zhang, Xi-Feng, et al. "Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches." International journal of molecular sciences 17.9 (2016): 1534.
Dastafkan, Kamran, et al. "Mechanism and behavior of silver nanoparticles in aqueous medium as adsorbent." Talanta 144 (2015): 1377-1386.
Jradi, Safi, et al. "Spatially controlled synthesis of silver nanoparticles and nanowires by photosensitized reduction." Nanotechnology 21.9 (2010): 095605.
Woehl, Taylor J., et al. "Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth." ACS nano 6.10 (2012): 8599-8610.
Balan, Lavinia, Jean-Pierre Malval, and Daniel-Joseph Lougnot. "In situ photochemically assisted synthesis of silver nanoparticles in polymer matrixes." Silver nanoparticles (2010): 79-92.
Zaier, Mohamed, et al. "Generating highly reflective and conductive metal layers through a light-assisted synthesis and assembling of silver nanoparticles in a polymer matrix." Scientific reports 7.1 (2017): 1-10.
Mallick, Kaushik, Mike J. Witcomb, and Mike S. Scurrell. "In situ synthesis of copper nanoparticles and poly (o-toluidine): A metal–polymer composite material." European polymer journal 42.3 (2006): 670-675.
Gentry, Stuart T., Stephen J. Fredericks, and Robert Krchnavek. "Controlled particle growth of silver sols through the use of hydroquinone as a selective reducing agent." Langmuir 25.5 (2009): 2613-2621.
ResearchMFC,“https://www.researchmfg.com/2016/08/tg-glass-transition-temperature/”
Bi, Xiangdong, and Aiye Liang. "In Situ‐Forming Cross‐linking Hydrogel Systems: Chemistry and Biomedical Applications." Emerging Concepts in Analysis and Applications of Hydrogels 86 (2016): 541-547.
Deng, Yuhao, et al. "Urethane acrylate‐based photosensitive resin for three‐dimensional printing of stereolithographic elastomer." Journal of Applied Polymer Science (2020): 49294.
“共軛性導電高分子材料技術簡介,” 9 12 2010.
Yoneyama, Hiroshi, and Masahiro Kitayama. "Photocatalytic deposition of light-localized polypyrrole film pattern on n-type silicon wafers." Chemistry Letters 15.5 (1986): 657-660.
Ramanavicius, A., et al. "Conducting and electrochemically generated polymers in sensor design (mini review)." Procedia Engineering 47 (2012): 825-828.
Nair, Jijeesh R., et al. "Novel self-directed dual surface metallisation via UV-curing technique for flexible polymeric capacitors." Organic Electronics 11.11 (2010): 1802-1808.
Truby, Ryan L., et al. "Soft robotic fingers with embedded ionogel sensors and discrete actuation modes for somatosensitive manipulation." 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2019.
Jiang, X. C., et al. "Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach." Nanoscale Res Lett 6.1 (2011): 32.



 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *