帳號:guest(3.21.44.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱彥翔
作者(外文):Chiu, Yan-Shyang
論文名稱(中文):顆粒物質對於金黃色葡萄球菌與產吲哚金黃桿菌生物膜之影響
論文名稱(外文):The effect of Particulate Matters on the Biofilm Formation of S. aureus and C. indologenes
指導教授(中文):王翔郁
指導教授(外文):Wang, Hsiang-Yu
口試委員(中文):張晃猷
高承源
口試委員(外文):Chang, Hwan-You
Kao, Cheng-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011530
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:80
中文關鍵詞:顆粒物質金黃色葡萄球菌產吲哚金黃桿菌生物膜
外文關鍵詞:Particulate MattersS. aureusC. indologenesBiofilm
相關次數:
  • 推薦推薦:0
  • 點閱點閱:42
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究探討顆粒物質(Particultate Matter, PM)對於金黃色葡萄球菌(S. aureus)與產吲哚金黃桿菌(C. indologenes)生物膜形成之影響,實驗以染色吸光值法定量生物膜累積量,並利用電子顯微鏡拍攝生物膜的表面型態。另外,本研究也利用染色吸光值測量在生物膜累積過程中浮游態的細菌活力。顆粒物質皆購自美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST),分別為SRM 1633c (Trace Elements in Coal Fly Ash)、SRM 1648a (Urban Particulate Matter)、SRM 2709a (San Joaquin Soil)及SRM 2711a (Montana II Soil)。
本研究發現顆粒物質皆會大幅增加細菌的生物膜累積量。S. aureus在添加顆粒物質後生物膜多寡關係相對於控制組為SRM 2711a (2.41倍) > SRM 1648a (1.81倍) > SRM 1633c (1.16倍),而C. indologenes生物膜累積量相對於控制組為SRM 2709a (12.64倍) > SRM 2711a (7.05倍) > SRM 1633c (3.60倍)。電子顯微鏡(SEM)的影像也證實SRM2711a可使S. aureus形成最緊密的生物膜結構,並且觀察到S. aureus形成的生物膜會更集中於顆粒物質周圍及粗糙不規則的顆粒表面。在兩種實驗菌株的實驗中皆可以觀察到顆粒物質會促進生物膜累積,並且推測顆粒物質上的化學成分差異及鉻元素含量的多寡導致促進生物膜累積能力的差異。另外, C. indologenes因為菌落間差異較大導致生物膜累積量有較大的標準差。
本研究也觀察到S. aureus在添加SRM 2711a與SRM 1648a後,浮游態細菌的代謝能力相對於控制組分別降低14.5 % (SRM 2711a)及11.8 % (SRM 1648a),而加入SRM 1633c後與控制組的差異(1.7 %)並不明顯。另外C. indologenes在添加顆粒物質後,代謝能力相對於控制組分別減少46.0 % (SRM 1633c)、45.6 % (SRM 2711a)及36.4 % (SRM 2709a),可知在生物膜累積的過程中顆粒物質會分別降低與提升浮游態中S. aureus及C. indologenes的代謝能力。
本研究證實顆粒物質會促進金黃色葡萄球菌及產吲哚金黃桿菌生物膜的生成,但對於兩種菌株浮游態細菌代謝能力的影響相反。未來建議使用其他成分或是尺寸不同的顆粒物質進行實驗,觀察其中特有的物質(如:微量元素、鉻元素及多環芳香烴等有機物質)如何影響細菌生物膜的累積情況,並使用多變量分析建立資料庫,以冀提供更精確的顆粒物質致病機制,進而降低人體因吸入顆粒物質所造成的健康風險。
This study investigated the effects of particulate matter on the biofilm formation of Staphylococcus aureus(S. aureus) and Chryseobacterium indologenes (C. indologenes). Biofilm amount was quantified using crystal violet labeling and the surface morphology of biofilm was obtained by the scanning electron microscope. In addition, the metabolic viability of the bacteria in the planktonic state during the accumulation of the biofilm was measured using alamarBlue™ labeling. All particulate matters were purchased from the National Institute of Standards and Technology (NIST), including SRM 1633c (Trace Elements in Coal Fly Ash), SRM 1648a (Urban Particulate Matter), SRM 2709a (San Joaquin Soil), and SRM 2711a (Montana II Soil).
Results showed that particulate matters greatly increased the accumulation of bacterial biofilm. Compared with the control, the amount of S. aureus biofilm after the addition of particulate matters increased to 2.41 folds for SRM 2711a, 1.81 folds for SRM 1648a, and 1.16 folds for SRM 1633c; while the C. indologenes biofilm accumulation to 12.64 folds for SRM 2709a, 7.05 folds for SRM 2711a, and 3.60 folds for SRM 1633c. Scanning electron microscope(SEM) images discovered that SRM 2711a induced S. aureus to form the most condense biofilm structure, and the biofilm formed by S. aureus was more concentrated around the particulate matter, especially for those with rough and irregular surfaces. The results of both bacteria strains showed that the particulate matters promoted the accumulation of biofilm, probably attributed by the various chemical compositions of the particulate matter and the high concentrations of chromium. Additionally, the results of C. indologenes were more diverse than S. aureus because of the heterogeneous responses towards the particulate matters among different colonies.
This study also observed that after adding SRM 2711a and SRM 1648a, the metabolic activity of S. aureus decreased by 14.5 % (SRM 2711a) and 11.8 % (SRM 1648a) compared to the control group, however, the effect of adding SRM 1633c (+1.7 %) wasn’t obvious. On the other hand, the metabolic activity of C. indologenes increased by 46.0 % (SRM 1633c), 45.6 % (SRM 2711a) and 36.4 % (SRM 2709a) compared to the control group after adding particulate matter. These data indicate that during the biofilm accumulation process, particulate matters have opposite effects toward the metabolic ability of S. aureus and C. indologenes in the planktonic state.
In conclusion, this study showed that particulate matters can promote the formation of biofilms of S. aureus and C.indologenes, but their effects on the metabolic activity of planktonic cells of these two strains were opposite. In the future, more particulate matters of different sizes or compositions should be used to observe how specific substances (eg. trace elements, polycyclic aromatic hydrocarbons, and other organic substances) affect the accumulation of bacterial biofilms. Combining the experimental data with multivariate analysis, a database can be established to provide a more precise pathogenic mechanism of particulate matters, thereby reducing their risk to human health.
摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 介紹 1
1.2 實驗目的與規劃 2
第二章 文獻回顧 3
2.1 顆粒物質(Particulate Matter, PM) 3
2.1.1 顆粒物質(Particulate Matter, PM)的來源及分類 4
2.1.2 顆粒物質(Particulate Matter, PM)與人類疾病關聯 7
2.1.3 顆粒物質(Particulate Matter, PM)對於微生物的影響 10
2.2 微生物族群(Microbiota) 13
2.2.1 微生物對人體的影響 13
2.2.2 人體疾病與微生物關聯 15
2.3 生物膜(Biofilm) 21
2.3.1 生物膜的形成 22
2.3.2 致病菌之生物膜與人類疾病關聯 24
第三章 實驗方法與材料 29
3.1 微生物培養方法 30
3.1.1 微生物固態培養(細菌維持) 30
3.1.2 微生物培養液配製 31
3.2 實驗用顆粒物質 33
3.2.1 SRM 1633c – Trace Elements in Coal Fly Ash 33
3.2.2 SRM 1648a – Urban Particulate Matter 35
3.2.3 SRM 2709a – San Joaquin Soil 37
3.2.4 SRM 2711a – Montana II Soil 39
3.2.5 顆粒物質濃度 41
3.3 顆粒物質與細菌培養 42
3.3.1 控制細菌液態培養初始濃度 42
3.3.2 液態培養 44
3.3.3 生物膜定量及觀測方法 45
3.3.4 浮游態細菌染色吸光值定量方法 48
第四章 結果與討論 49
4.1 金黃色葡萄球菌S. aureus生物膜 49
4.1.1 顆粒物質對S. aureus生物膜累積之影響 49
4.1.2 顆粒物質對S. aureus生物膜表面形態之影響(SEM) 51
4.2 金黃色葡萄球菌S. aureus浮游態代謝能力的影響 57
4.3 顆粒物質對產吲哚金黃桿菌C. indologenes的影響 59
4.3.1 C. indologenes生物膜累積之影響 60
4.3.2 C. indologenes浮游態細菌代謝能力之影響 63
4.4 顆粒尺寸對細菌生長的影響 65
第五章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 71
參考文獻 72
附錄 80
[1] T. Hidaka, E. Ogawa, E. H. Kobayashi, T. Suzuki, R. Funayama, T. Nagashima, et al., "The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin," Nature immunology, vol. 18, pp. 64-73, 2017.
[2] K.-H. Kim, E. Kabir, and S. Kabir, "A review on the human health impact of airborne particulate matter," Environment international, vol. 74, pp. 136-143, 2015.
[3] D. E. Newby, P. M. Mannucci, G. S. Tell, A. A. Baccarelli, R. D. Brook, K. Donaldson, et al., "Expert position paper on air pollution and cardiovascular disease," European heart journal, vol. 36, pp. 83-93, 2015.
[4] G. M. Marcazzan, S. Vaccaro, G. Valli, and R. Vecchi, "Characterisation of PM10 and PM2. 5 particulate matter in the ambient air of Milan (Italy)," Atmospheric Environment, vol. 35, pp. 4639-4650, 2001.
[5] D. W. Menzel and J. H. Ryther, "THE COMPOSITION OF PARTICULATE ORGANIC MATTER IN THE WESTERN NORTH ATLANTIC 1," Limnology and Oceanography, vol. 9, pp. 179-186, 1964.
[6] B. R. Simoneit, M. Kobayashi, M. Mochida, K. Kawamura, M. Lee, H. J. Lim, et al., "Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE‐Asia campaign," Journal of Geophysical Research: Atmospheres, vol. 109, 2004.
[7] M. J. Kleeman, J. J. Schauer, and G. R. Cass, "Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes," Environmental Science & Technology, vol. 33, pp. 3516-3523, 1999.
[8] J. O. Anderson, J. G. Thundiyil, and A. Stolbach, "Clearing the air: a review of the effects of particulate matter air pollution on human health," Journal of Medical Toxicology, vol. 8, pp. 166-175, 2012.
[9] X. Querol, A. Alastuey, S. Rodriguez, F. Plana, E. Mantilla, and C. R. Ruiz, "Monitoring of PM10 and PM2. 5 around primary particulate anthropogenic emission sources," Atmospheric Environment, vol. 35, pp. 845-858, 2001.
[10] Y.-C. Chen, C.-Y. Hsu, S.-L. Lin, G.-P. Chang-Chien, M.-J. Chen, G.-C. Fang, et al., "Characteristics of concentrations and metal compositions for PM2. 5 and PM2. 5-10 in Yunlin county, Taiwan during air quality deterioration," Aerosol and Air Quality Research, vol. 15, pp. 2571-2583, 2015.
[11] J. L. Mauderly, "Toxicological and epidemiological evidence for health risks from inhaled engine emissions," Environmental health perspectives, vol. 102, pp. 165-171, 1994.
[12] P. Pant and R. M. Harrison, "Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review," Atmospheric environment, vol. 77, pp. 78-97, 2013.
[13] N. Pérez, J. Pey, M. Cusack, C. Reche, X. Querol, A. Alastuey, et al., "Variability of particle number, black carbon, and PM10, PM2. 5, and PM1 levels and speciation: influence of road traffic emissions on urban air quality," Aerosol Science and Technology, vol. 44, pp. 487-499, 2010.
[14] E. E. Kwon and M. J. Castaldi, "Mechanistic understanding of polycyclic aromatic hydrocarbons (PAHs) from the thermal degradation of tires under various oxygen concentration atmospheres," Environmental science & technology, vol. 46, pp. 12921-12926, 2012.
[15] L. L. N. Guarieiro and A. L. N. Guarieiro, "Vehicle emissions: what will change with use of biofuel?," Biofuels-Economy, Environment and Sustainability, pp. 357-386, 2013.
[16] J. S. Brown, T. Gordon, O. Price, and B. Asgharian, "Thoracic and respirable particle definitions for human health risk assessment," Particle and fibre toxicology, vol. 10, p. 12, 2013.
[17] J. C. Corbin, "PM0. 1 particles from aircraft may increase risk of vascular disease," Bmj, vol. 347, p. f6783, 2013.
[18] Y.-F. Xing, Y.-H. Xu, M.-H. Shi, and Y.-X. Lian, "The impact of PM2. 5 on the human respiratory system," Journal of thoracic disease, vol. 8, p. E69, 2016.
[19] J. S. Apte, M. Brauer, A. J. Cohen, M. Ezzati, and C. A. Pope III, "Ambient PM2. 5 reduces global and regional life expectancy," Environmental Science & Technology Letters, vol. 5, pp. 546-551, 2018.
[20] H. Scheers, L. Jacobs, L. Casas, B. Nemery, and T. S. Nawrot, "Long-term exposure to particulate matter air pollution is a risk factor for stroke: meta-analytical evidence," Stroke, vol. 46, pp. 3058-3066, 2015.
[21] K. Ahn, "The role of air pollutants in atopic dermatitis," Journal of Allergy and Clinical Immunology, vol. 134, pp. 993-999, 2014.
[22] T. C. Turin, Y. Kita, N. Rumana, Y. Nakamura, K. Ueda, N. Takashima, et al., "Ambient air pollutants and acute case-fatality of cerebro-cardiovascular events: Takashima Stroke and AMI Registry, Japan (1988–2004)," Cerebrovascular Diseases, vol. 34, pp. 130-139, 2012.
[23] Y. Zhang, S. Li, X. Pan, S. Tong, J. J. Jaakkola, A. Gasparrini, et al., "The effects of ambient temperature on cerebrovascular mortality: an epidemiologic study in four climatic zones in China," Environmental Health, vol. 13, p. 24, 2014.
[24] A. Huss, A. Spoerri, M. Egger, and M. Röösli, "Aircraft noise, air pollution, and mortality from myocardial infarction," Epidemiology, pp. 829-836, 2010.
[25] R. W. Atkinson, I. M. Carey, A. J. Kent, T. P. van Staa, H. R. Anderson, and D. G. Cook, "Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases," Epidemiology, pp. 44-53, 2013.
[26] C. M. Wong, H. K. Lai, H. Tsang, T. Q. Thach, G. N. Thomas, K. B. H. Lam, et al., "Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents," Environmental health perspectives, vol. 123, pp. 1167-1172, 2015.
[27] C. A. Pope III, R. T. Burnett, G. D. Thurston, M. J. Thun, E. E. Calle, D. Krewski, et al., "Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease," Circulation, vol. 109, pp. 71-77, 2004.
[28] G. Löfroth, C. Stensman, and M. Brandhorst-Satzkorn, "Indoor sources of mutagenic aerosol particulate matter: smoking, cooking and incense burning," Mutation Research/Genetic Toxicology, vol. 261, pp. 21-28, 1991.
[29] S. L. Delima, R. K. McBride, P. M. Preshaw, P. A. Heasman, and P. S. Kumar, "Response of subgingival bacteria to smoking cessation," Journal of clinical microbiology, vol. 48, pp. 2344-2349, 2010.
[30] P. S. Kumar, C. R. Matthews, V. Joshi, M. de Jager, and M. Aspiras, "Tobacco smoking affects bacterial acquisition and colonization in oral biofilms," Infection and immunity, vol. 79, pp. 4730-4738, 2011.
[31] J. Rylance, A. Kankwatira, D. E. Nelson, E. Toh, R. B. Day, H. Lin, et al., "Household air pollution and the lung microbiome of healthy adults in Malawi: a cross-sectional study," BMC microbiology, vol. 16, pp. 1-7, 2016.
[32] L. Biedermann, J. Zeitz, J. Mwinyi, E. Sutter-Minder, A. Rehman, S. J. Ott, et al., "Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans," PloS one, vol. 8, p. e59260, 2013.
[33] A. Abbott, "Scientists bust myth that our bodies have more bacteria than human cells," Nature, vol. 10, 2016.
[34] A. L. Byrd, Y. Belkaid, and J. A. Segre, "The human skin microbiome," Nature Reviews Microbiology, vol. 16, p. 143, 2018.
[35] W. H. Man, W. A. de Steenhuijsen Piters, and D. Bogaert, "The microbiota of the respiratory tract: gatekeeper to respiratory health," Nature Reviews Microbiology, vol. 15, pp. 259-270, 2017.
[36] A. B. Shreiner, J. Y. Kao, and V. B. Young, "The gut microbiome in health and in disease," Current opinion in gastroenterology, vol. 31, p. 69, 2015.
[37] F. E. Dewhirst, T. Chen, J. Izard, B. J. Paster, A. C. Tanner, W.-H. Yu, et al., "The human oral microbiome," Journal of bacteriology, vol. 192, pp. 5002-5017, 2010.
[38] W. G. Wade, "The oral microbiome in health and disease," Pharmacological research, vol. 69, pp. 137-143, 2013.
[39] A. Cogen, V. Nizet, and R. Gallo, "Skin microbiota: a source of disease or defence?," British Journal of Dermatology, vol. 158, pp. 442-455, 2008.
[40] E. A. Grice and J. A. Segre, "The skin microbiome," Nature reviews microbiology, vol. 9, pp. 244-253, 2011.
[41] A. L. Byrd, C. Deming, S. K. Cassidy, O. J. Harrison, W.-I. Ng, S. Conlan, et al., "Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis," Science translational medicine, vol. 9, 2017.
[42] M. Kehrer, C. Pedersen, T. G. Jensen, and A. T. Lassen, "Increasing incidence of pyogenic spondylodiscitis: a 14-year population-based study," Journal of infection, vol. 68, pp. 313-320, 2014.
[43] J. Aguilar, V. Urday-Cornejo, S. Donabedian, M. Perri, R. Tibbetts, and M. Zervos, "Staphylococcus aureus meningitis: case series and literature review," Medicine, vol. 89, pp. 117-125, 2010.
[44] V. Pintado, M. Meseguer, J. Fortun, J. Cobo, E. Navas, C. Quereda, et al., "Clinical study of 44 cases of Staphylococcus aureus meningitis," European Journal of Clinical Microbiology and Infectious Diseases, vol. 21, pp. 864-868, 2002.
[45] E. Reihsaus, H. Waldbaur, and W. Seeling, "Spinal epidural abscess: a meta-analysis of 915 patients," Neurosurgical review, vol. 23, pp. 175-204, 2000.
[46] M. Löhr, T. Reithmeier, R.-I. Ernestus, H. Ebel, and N. Klug, "Spinal epidural abscess: prognostic factors and comparison of different surgical treatment strategies," Acta neurochirurgica, vol. 147, pp. 159-166, 2005.
[47] C. M. Odio, T. Ramirez, G. Arias, A. Abdelnour, I. Hidalgo, M. L. Herrera, et al., "Double blind, randomized, placebo-controlled study of dexamethasone therapy for hematogenous septic arthritis in children," The Pediatric infectious disease journal, vol. 22, pp. 883-889, 2003.
[48] M. H. Kollef, A. Shorr, Y. P. Tabak, V. Gupta, L. Z. Liu, and R. Johannes, "Epidemiology and outcomes of health-care–associated pneumonia: results from a large US database of culture-positive pneumonia," Chest, vol. 128, pp. 3854-3862, 2005.
[49] R. E. Bryant and C. J. Salmon, "Pleural empyema," Clinical infectious diseases, pp. 747-762, 1996.
[50] 蘇麗香, 湯雅芬, 陳常梅, 紀巧玲, and 劉建衛, "內科加護病房 Chryseobacterium indologenes 群突發感染事件調查," 感染控制雜誌, vol. 26, pp. 229-240, 2016.
[51] M. Vaneechoutte, A. Nemec, P. Kämpfer, P. Cools, and G. Wauters, "Acinetobacter, Chryseobacterium, Moraxella, and Other Nonfermentative Gram‐Negative Rods," Manual of clinical microbiology, pp. 813-837, 2015.
[52] P. Hsueh, L. Teng, P. Yang, S. Ho, W. Hsieh, and K. Luh, "Increasing incidence of nosocomial Chryseobacterium indologenes infections in Taiwan," European Journal of Clinical Microbiology and Infectious Diseases, vol. 16, pp. 568-574, 1997.
[53] F.-L. Chen, G.-C. Wang, S.-O. Teng, T.-Y. Ou, F.-L. Yu, and W.-S. Lee, "Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases," Journal of Microbiology, Immunology and Infection, vol. 46, pp. 425-432, 2013.
[54] M. R. Bayraktar, E. Aktas, Y. Ersoy, A. Cicek, and R. Durmaz, "Postoperative Chryseobacterium indologenes bloodstream infection caused by contamination of distillate water," infection control and hospital epidemiology, vol. 28, pp. 368-369, 2007.
[55] Y.-S. Yang, F.-C. Yeh, W.-C. Tsai, T.-W. Huang, J.-R. Sun, M.-C. Chan, et al., "Clinical Characteristics and Outcome of Chryseobacterium indologenes Bacteremia," Journal of Medical Sciences, vol. 33, pp. 85-90, 2013.
[56] E. M. Stapleton, R. Manges, G. Parker, E. A. Stone, T. M. Peters, R. J. Blount, et al., "Indoor Particulate Matter From Smoker Homes Induces Bacterial Growth, Biofilm Formation, and Impairs Airway Antimicrobial Activity. A Pilot Study," Frontiers in public health, vol. 7, p. 418, 2020.
[57] S. J. Hussey, J. Purves, N. Allcock, V. E. Fernandes, P. S. Monks, J. M. Ketley, et al., "Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation," Environmental microbiology, vol. 19, pp. 1868-1880, 2017.
[58] L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, "Bacterial biofilms: from the natural environment to infectious diseases," Nature reviews microbiology, vol. 2, pp. 95-108, 2004.
[59] D. López, H. Vlamakis, and R. Kolter, "Biofilms," Cold Spring Harbor perspectives in biology, vol. 2, p. a000398, 2010.
[60] P. Watnick and R. Kolter, "Biofilm, city of microbes," Journal of bacteriology, vol. 182, pp. 2675-2679, 2000.
[61] G. J. Tortora, B. R. Funke, C. L. Case, and T. R. Johnson, Microbiology: an introduction vol. 9: Benjamin Cummings San Francisco, CA, 2004.
[62] G. A. O'Toole and R. Kolter, "Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis," Molecular microbiology, vol. 28, pp. 449-461, 1998.
[63] E. Karatan and P. Watnick, "Signals, regulatory networks, and materials that build and break bacterial biofilms," Microbiology and molecular biology reviews, vol. 73, pp. 310-347, 2009.
[64] D. An and M. R. Parsek, "The promise and peril of transcriptional profiling in biofilm communities," Current opinion in microbiology, vol. 10, pp. 292-296, 2007.
[65] R. Briandet, J.-M. Herry, and M.-N. Bellon-Fontaine, "Determination of the van der Waals, electron donor and electron acceptor surface tension components of static Gram-positive microbial biofilms," Colloids and Surfaces B: Biointerfaces, vol. 21, pp. 299-310, 2001.
[66] R. M. Donlan, "Biofilms: microbial life on surfaces," Emerging infectious diseases, vol. 8, p. 881, 2002.
[67] Y. Sakuragi and R. Kolter, "Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa," Journal of bacteriology, vol. 189, pp. 5383-5386, 2007.
[68] D. Monroe, "Looking for chinks in the armor of bacterial biofilms," PLoS Biol, vol. 5, p. e307, 2007.
[69] K. E. Beenken, P. M. Dunman, F. McAleese, D. Macapagal, E. Murphy, S. J. Projan, et al., "Global gene expression in Staphylococcus aureus biofilms," Journal of bacteriology, vol. 186, pp. 4665-4684, 2004.
[70] S. M. Jones, M. Morgan, T. J. Humphrey, and H. Lappin-Scott, "Effect of vancomycin and rifampicin on meticillin-resistant Staphylococcus aureus biofilms," The Lancet, vol. 357, pp. 40-41, 2001.
[71] N. K. Archer, M. J. Mazaitis, J. W. Costerton, J. G. Leid, M. E. Powers, and M. E. Shirtliff, "Staphylococcus aureus biofilms: properties, regulation, and roles in human disease," Virulence, vol. 2, pp. 445-459, 2011.
[72] J. Kluytmans, A. Van Belkum, and H. Verbrugh, "Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks," Clinical microbiology reviews, vol. 10, pp. 505-520, 1997.
[73] R. P. Wenzel and M. B. Edmond, "The impact of hospital-acquired bloodstream infections," Emerging infectious diseases, vol. 7, p. 174, 2001.
[74] R. J. Rubin, C. A. Harrington, A. Poon, K. Dietrich, J. A. Greene, and A. Moiduddin, "The economic impact of Staphylococcus aureus infection in New York City hospitals," Emerging infectious diseases, vol. 5, p. 9, 1999.
[75] D. P. Lew and F. A. Waldvogel, "Osteomyelitis," The Lancet, vol. 364, pp. 369-379, 2004.
[76] D. Baldoni, M. Haschke, Z. Rajacic, W. Zimmerli, and A. Trampuz, "Linezolid alone or combined with rifampin against methicillin-resistant Staphylococcus aureus in experimental foreign-body infection," Antimicrobial agents and chemotherapy, vol. 53, pp. 1142-1148, 2009.
[77] L. Heitz-Mayfield and N. P. Lang, "Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis," Periodontology 2000, vol. 53, pp. 167-181, 2010.
[78] K. Gjødsbøl, J. J. Christensen, T. Karlsmark, B. Jørgensen, B. M. Klein, and K. A. Krogfelt, "Multiple bacterial species reside in chronic wounds: a longitudinal study," International wound journal, vol. 3, pp. 225-231, 2006.
[79] C. Hansson, J. Hoborn, A. Möller, and G. Swanbeck, "The microbial flora in venous leg ulcers without clinical signs of infection. Repeated culture using a validated standardised microbiological technique," Acta dermato-venereologica, vol. 75, p. 24, 1995.
[80] B. M. Peters, M. A. Jabra-Rizk, M. A. Scheper, J. G. Leid, J. W. Costerton, and M. E. Shirtliff, "Microbial interactions and differential protein expression in Staphylococcus aureus–Candida albicans dual-species biofilms," FEMS Immunology & Medical Microbiology, vol. 59, pp. 493-503, 2010.
[81] Y.-C. Chang, H.-H. Lo, H.-Y. Hsieh, and S.-M. Chang, "Identification, epidemiological relatedness, and biofilm formation of clinical Chryseobacterium indologenes isolates from central Taiwan," Journal of Microbiology, Immunology and Infection, vol. 48, pp. 559-564, 2015.
[82] B. H. Ziran, "Osteomyelitis," Journal of Trauma and Acute Care Surgery, vol. 62, pp. S59-S60, 2007.
[83] P. á. Dunman, E. Murphy, S. Haney, D. Palacios, G. Tucker-Kellogg, S. Wu, et al., "Transcription Profiling-Based Identification ofStaphylococcus aureus Genes Regulated by the agrand/or sarA Loci," Journal of bacteriology, vol. 183, pp. 7341-7353, 2001.
[84] J. Costerton, L. Montanaro, and C. R. Arciola, "Biofilm in implant infections: its production and regulation," The International journal of artificial organs, vol. 28, pp. 1062-1068, 2005.
[85] A. I. Cuesta, V. Jewtuchowicz, M. I. Brusca, M. L. Nastri, and A. C. Rosa, "Prevalence of Staphylococcus spp and Candida spp in the oral cavity and periodontal pockets of periodontal disease patients," Acta Odontológica Latinoamericana, vol. 23, pp. 20-26, 2010.
[86] C. F. Schierle, M. De la Garza, T. A. Mustoe, and R. D. Galiano, "Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model," Wound repair and regeneration, vol. 17, pp. 354-359, 2009.
[87] 張崇維, "顆粒物質對金黃色葡萄球菌與表皮葡萄球菌的影響," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2019.
[88] Y. Xie and L. Yang, "Calcium and magnesium ions are membrane-active against stationary-phase staphylococcus aureus with high specificity," Scientific reports, vol. 6, pp. 1-8, 2016.
[89] E. P. Ernest, A. S. Machi, B. A. Karolcik, P. R. LaSala, and M. J. Dietz, "Topical adjuvants incompletely remove adherent Staphylococcus aureus from implant materials," Journal of Orthopaedic Research®, vol. 36, pp. 1599-1604, 2018.
[90] K. L. Urish, P. W. DeMuth, B. W. Kwan, D. W. Craft, D. Ma, H. Haider, et al., "Antibiotic-tolerant Staphylococcus aureus biofilm persists on arthroplasty materials," Clinical Orthopaedics and Related Research®, vol. 474, pp. 1649-1656, 2016.
[91] N. Mangwani, S. Shukla, S. Kumari, T. Rao, and S. Das, "Characterization of S tenotrophomonas acidaminiphila NCW‐702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons," Journal of applied microbiology, vol. 117, pp. 1012-1024, 2014.
[92] Y. Zhang, F. Wang, X. Zhu, J. Zeng, Q. Zhao, and X. Jiang, "Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation," Bioresource technology, vol. 193, pp. 274-280, 2015.
[93] M. E. Kreft, U. D. Jerman, E. Lasič, T. L. Rižner, N. Hevir-Kene, L. Peternel, et al., "The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model," Pharmaceutical research, vol. 32, pp. 665-679, 2015.
[94] S. Reichl and K. Becker, "Cultivation of RPMI 2650 cells as an in‐vitro model for human transmucosal nasal drug absorption studies: optimization of selected culture conditions," Journal of Pharmacy and Pharmacology, vol. 64, pp. 1621-1630, 2012.
[95] D. Djordjevic, M. Wiedmann, and L. McLandsborough, "Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation," Applied and environmental microbiology, vol. 68, pp. 2950-2958, 2002.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *