|
1. HOLLAND, W.W.J.A.J.o.E., Health effects of participate pollu-tion: reappraising the evidence. 1979. 110(5): p. 525-659. 2. Kelly, F.J. and J.C.J.A.e. Fussell, Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. 2012. 60: p. 504-526. 3. Brown, J.S., et al., Thoracic and respirable particle definitions for human health risk assessment. 2013. 10(1): p. 12. 4. Lo, W.-C., et al., Burden of disease attributable to ambient fine particulate matter exposure in Taiwan. 2017. 116(1): p. 32-40. 5. Lima, A.L.C., J.W. Farrington, and C.M. Reddy, Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environmental forensics, 2005. 6(2): p. 109-131. 6. Kameda, Y., et al., Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to the human respiratory tract. Science of the Total Environment, 2005. 340(1-3): p. 71-80. 7. Kameda, T., Atmospheric chemistry of polycyclic aromatic hydrocarbons and related compounds. Journal of Health Science, 2011. 57(6): p. 504-511. 8. Unwin, J., et al., An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Annals of Occupational Hygiene, 2006. 50(4): p. 395-403. 9. Olsson, A.C., et al., Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: a multicenter study in Europe. Occupational and environmental medicine, 2010. 67(2): p. 98-103. 10. Dockery, D.W. and C.A.J.A.r.o.p.h. Pope, Acute respiratory effects of particulate air pollution. 1994. 15(1): p. 107-132. 11. Dominici, F., et al., Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. 2006. 295(10): p. 1127-1134. 12. Saldiva, P.H., et al., Association between air pollution and mortality due to respiratory diseases in children in São Paulo, Brazil: a preliminary report. 1994. 65(2): p. 218-225. 13. Ackermann-Liebrich, U., et al., Lung function and long term exposure to air pollutants in Switzerland. Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team. 1997. 155(1): p. 122-129. 14. Schindler, C., et al., Short-term variation in air pollution and in average lung function among never-smokers: the Swiss Study on Air Pollution and Lung Diseases in Adults (SAPALDIA). 2001. 163(2): p. 356-361. 15. Schwartz, J.J.E., Air pollution and hospital admissions for heart disease in eight US counties. 1999: p. 17-22. 16. Ruckerl, R., et al., Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. 2006. 173(4): p. 432-441. 17. Peters, A., et al., Increases in heart rate during an air pollution episode. 1999. 150(10): p. 1094-1098. 18. Kim, K.E., D. Cho, and H.J.J.L.s. Park, Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. 2016. 152: p. 126-134. 19. Puri, P., et al., Effects of air pollution on the skin: A review. 2017. 83(4): p. 415. 20. Ritz, B., et al., Ambient air pollution and risk of birth defects in Southern California. 2002. 155(1): p. 17-25. 21. Calderón-Garcidueñas, L., et al., Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adults. 2008. 36(2): p. 289-310. 22. Asher, M.I., et al., Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. 2006. 368(9537): p. 733-743. 23. Thomsen, S.F.J.I.a., Atopic dermatitis: natural history, diagnosis, and treatment. 2014. 2014. 24. Lowe, A.J., et al., Do boys do the atopic march while girls dawdle? 2008. 121(5): p. 1190-1195. 25. Thyssen, J.P., L. Skov, and A.J.J.o.t.A.A.o.D. Egeberg, Cause-specific mortality in adults with atopic dermatitis. 2018. 78(3): p. 506-510. 26. Kim, J., et al., Symptoms of atopic dermatitis are influenced by outdoor air pollution. 2013. 132(2): p. 495-498. e1. 27. Ahn, K.J.J.o.A. and C. Immunology, The role of air pollutants in atopic dermatitis. 2014. 134(5): p. 993-999. 28. Byrd, A.L., et al., Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. 2017. 9(397): p. eaal4651. 29. Rosenstein, B.J. and G.R.J.T.J.o.p. Cutting, The diagnosis of cystic fibrosis: a consensus statement. 1998. 132(4): p. 589-595. 30. Rosenfeld, M., et al., Gender gap in cystic fibrosis mortality. 1997. 145(9): p. 794-803. 31. Orenstein, D.M., G.B. Winnie, and H.J.T.J.o.p. Altman, Cystic fibrosis: a 2002 update. 2002. 140(2): p. 156-164. 32. Zemel, B.S., et al., Longitudinal relationship among growth, nutritional status, and pulmonary function in children with cystic fibrosis: analysis of the Cystic Fibrosis Foundation National CF Patient Registry. 2000. 137(3): p. 374-380. 33. Goss, C.H., et al., Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. 2004. 169(7): p. 816-821. 34. Sender, R., S. Fuchs, and R.J.P.b. Milo, Revised estimates for the number of human and bacteria cells in the body. 2016. 14(8): p. e1002533. 35. Byrd, A.L., Y. Belkaid, and J.A.J.N.R.M. Segre, The human skin microbiome. 2018. 16(3): p. 143. 36. Koch, R., Investigations into the etiology of traumatic infective diseases. Vol. 88. 1880: New Sydenham Society. 37. Qin, J., et al., A human gut microbial gene catalogue established by metagenomic sequencing. 2010. 464(7285): p. 59. 38. Schroeder, B.O. and F.J.N.m. Bäckhed, Signals from the gut microbiota to distant organs in physiology and disease. 2016. 22(10): p. 1079. 39. Arnold, I.C., et al., Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. 2011. 121(8): p. 3088-3093. 40. Lathrop, S.K., et al., Peripheral education of the immune system by colonic commensal microbiota. 2011. 478(7368): p. 250. 41. Ley, R.E., et al., Obesity alters gut microbial ecology. 2005. 102(31): p. 11070-11075. 42. Turnbaugh, P.J., et al., The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. 2009. 1(6): p. 6ra14-6ra14. 43. Cogen, A., V. Nizet, and R.J.B.J.o.D. Gallo, Skin microbiota: a source of disease or defence? 2008. 158(3): p. 442-455. 44. Grice, E.A. and J.A.J.N.R.M. Segre, The skin microbiome. 2011. 9(4): p. 244. 45. Bauernfeind, A., et al., Qualitative and quantitative microbiological analysis of sputa of 102 patients with cystic fibrosis. 1987. 15(4): p. 270-277. 46. Le, H.P.J.J.o.I.S. and Technology, Progress and trends in ink-jet printing technology. 1998. 42(1): p. 49-62. 47. Terry, S.C., J.H. Jerman, and J.B.J.I.t.o.e.d. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer. 1979. 26(12): p. 1880-1886. 48. Manz, A., et al., Design of an open-tubular column liquid chromatograph using silicon chip technology. 1990. 1(1-6): p. 249-255. 49. Shoji, S., et al., Prototype miniature blood gas analyser fabricated on a silicon wafer. 1988. 14(2): p. 101-107. 50. Van Lintel, H., et al., A piezoelectric micropump based on micromachining of silicon. 1988. 15(2): p. 153-167. 51. Charlton, S.C., M.V. Rebec, and C. Ruetten, Self-metering fluid analysis device. 1993, Google Patents. 52. Lu, L.-H., K.S. Ryu, and C.J.J.o.m.s. Liu, A magnetic microstirrer and array for microfluidic mixing. 2002. 11(5): p. 462-469. 53. Kuswandi, B., J. Huskens, and W.J.A.c.a. Verboom, Optical sensing systems for microfluidic devices: a review. 2007. 601(2): p. 141-155. 54. Thorsen, T., et al., Dynamic pattern formation in a vesicle-generating microfluidic device. 2001. 86(18): p. 4163. 55. Teh, S.-Y., et al., Droplet microfluidics. 2008. 8(2): p. 198-220. 56. Guo, M.T., et al., Droplet microfluidics for high-throughput biological assays. 2012. 12(12): p. 2146-2155. 57. Agresti, J.J., et al., Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. 2010. 107(9): p. 4004-4009. 58. Gensler, W.J., The Synthesis of Isoquinolines by the P omeranz‐F ritsch Reaction. Organic Reactions, 2004. 6: p. 191-206. 59. Banerjee, S. and R.N. Zare, Syntheses of isoquinoline and substituted quinolines in charged microdroplets. Angewandte Chemie, 2015. 127(49): p. 15008-15012. 60. Zhu, P. and L.J.L.o.a.C. Wang, Passive and active droplet generation with microfluidics: a review. 2017. 17(1): p. 34-75. 61. Nisisako, T., T. Torii, and T.J.L.o.a.C. Higuchi, Droplet formation in a microchannel network. 2002. 2(1): p. 24-26. 62. Umbanhowar, P., V. Prasad, and D.A.J.L. Weitz, Monodisperse emulsion generation via drop break off in a coflowing stream. 2000. 16(2): p. 347-351. 63. Yobas, L., et al., High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. 2006. 6(8): p. 1073-1079. 64. Anna, S.L., N. Bontoux, and H.A.J.A.p.l. Stone, Formation of dispersions using “flow focusing” in microchannels. 2003. 82(3): p. 364-366. 65. Schuler, F., et al., Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA. 2015. 15(13): p. 2759-2766. 66. Sugiura, S., M. Nakajima, and M.J.L. Seki, Prediction of droplet diameter for microchannel emulsification. 2002. 18(10): p. 3854-3859. 67. Mine, Y., et al., Preparation and stabilization of simple and multiple emulsions using a microporous glass membrane. 1996. 6(4-5): p. 261-268. 68. Xu, J.H., et al., Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. 2008. 5(6): p. 711-717. 69. Gupta, A. and R.J.P.o.F. Kumar, Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect. 2010. 22(12): p. 122001. 70. Xu, J., et al., Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. 2006. 6(1): p. 131-136. 71. Nossal, G.J.J.B.j.o.e.p., Antibody production by single cells. 1958. 39(5): p. 544. 72. Viret, C. and W.J.T.J.o.I. Gurr, The origin of the “one cell-one antibody” rule. 2009. 182(3): p. 1229-1230. 73. Kang, D.-K., et al., Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection. 2014. 5: p. 5427. 74. Iino, R., et al., A single-cell drug efflux assay in bacteria by using a directly accessible femtoliter droplet array. 2012. 12(20): p. 3923-3929. 75. Iino, R., et al., Design of a large-scale femtoliter droplet array for single-cell analysis of drug-tolerant and drug-resistant bacteria. 2013. 4: p. 300. 76. Jang, S., et al., On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array. 2016. 16(10): p. 1909-1916. 77. Boedicker, J.Q., et al., Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. 2008. 8(8): p. 1265-1272. 78. Lewis, K.J.A.r.o.m., Persister cells. 2010. 64: p. 357-372. 79. Noble, R.T., S.B.J.J.o.w. Weisberg, and health, A review of technologies for rapid detection of bacteria in recreational waters. 2005. 3(4): p. 381-392. 80. Yao, L., et al., CMOS conductometric system for growth monitoring and sensing of bacteria. 2011. 5(3): p. 223-230. 81. Zelada-Guillén, G.A., et al., Real-time potentiometric detection of bacteria in complex samples. 2010. 82(22): p. 9254-9260. 82. Davey, H.M. and D.B.J.M.M.B.R. Kell, Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. 1996. 60(4): p. 641-696. 83. Phinney, D. and T.J.C.T.J.o.t.I.S.f.A.C. Cucci, Flow cytometry and phytoplankton. 1989. 10(5): p. 511-521. 84. Steen, H., Flow cytometry instrumentation, in Particle analysis in oceanography. 1991, Springer. p. 3-29. 85. Button, D. and B.J.H.o.m.i.a.m.e. Robertson, Use of high-resolution flow cytometry to determine the activity and distribution of aquatic bacteria. 1993: p. 163-173. 86. Olson, R.J., E.R. Zettler, and M.D.J.H.o.m.i.a.m.e. DuRand, Phytoplankton analysis using flow cytometry. 1993: p. 175-186. 87. Hindson, B.J., et al., High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. 2011. 83(22): p. 8604-8610. 88. Patterson, J.L., et al., Analysis of adherence, biofilm formation and cytotoxicity suggests a greater virulence potential of Gardnerella vaginalis relative to other bacterial-vaginosis-associated anaerobes. 2010. 156(Pt 2): p. 392. 89. Harf, C., et al., Flow cytometric determination of endocytosis of viable labelled Legionella pneumophila by Acanthamoeba palestinensis. 1997. 27(3): p. 269-274. 90. May, W.E., S.P. Wasik, and D.H. Freeman, Determination of the solubility behavior of some polycyclic aromatic hydrocarbons in water. Analytical Chemistry, 1978. 50(7): p. 997-1000. 91. Ma, Y.-G., et al., Critical review and recommended values for the physical-chemical property data of 15 polycyclic aromatic hydrocarbons at 25 C. Journal of Chemical & Engineering Data, 2010. 55(2): p. 819-825. 92. Adams, M.J.M.i.M.R., Bacterial viruses. 1950. 2. 93. Mackay, D. and W.Y. Shiu, Aqueous solubility of polynuclear aromatic hydrocarbons. Journal of Chemical and Engineering Data, 1977. 22(4): p. 399-402. 94. Šepič, E., M. Bricelj, and H. Leskovšek, Biodegradation studies of polyaromatic hydrocarbons in aqueous media. Journal of applied microbiology, 1997. 83(5): p. 561-568. 95. Joyce, G.H. and D.C. White, Effect of benzo (a) pyrene and piperonyl butoxide on formation of respiratory system, phospholipids, and carotenoids of Staphylococcus aureus. Journal of bacteriology, 1971. 106(2): p. 403-411. 96. Hussey, S.J., et al., Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation. Environmental microbiology, 2017. 19(5): p. 1868-1880. 97. Vasquez, J.K., et al., Simplified AIP-II peptidomimetics are potent inhibitors of Staphylococcus aureus AgrC quorum sensing receptors. Chembiochem: a European journal of chemical biology, 2017. 18(4): p. 413. 98. Guzman, A.R., et al., A three-dimensional electrode for highly efficient electrocoalescence-based droplet merging. Biomedical microdevices, 2015. 17(2): p. 35. 99. Flow Cytometry Guide. Retrieved May 24, 2020, from https://www.creative-diagnostics.com/flow-cytometry-guide.htm 100. LabMedica International staff writers (2019, April 10).Liquid Biopsy Potential Tested with ddPCR Technology. Retrieved May 24, 2020, from https://www.labmedica.com/molecular-diagnostics/articles/294777571/liquid-biopsy-potential-tested-with-ddpcr-technology.html 101. Steve Pawlizak (2009) Fluorescence Microscopy. Retrieved May 24, 2020, from https://home.uni-leipzig.de/pwm/web/?section=introduction&page=fluorescence
|