|
[1]行政院原子能委員會, “乾式貯存管制-核能電廠用過核子燃料貯存表” [2]葉宗洸、黃爾文、王美雅、陳岳泰、李郁萱、王盈之, “除役核電廠用過核燃料室內乾式貯存安全管制技術-子計畫二:除役核電廠用過核燃料室內乾式貯存之結構及密封管制技術研析期末報告”, 2017 [3]核能後端營運.“第一核能發電廠乾貯計畫安全分析-第一章綜合概述”, 2018 [4]核能後端營運.“第一核能發電廠乾貯計畫安全分析-第三章設施之設計準則”, 2018 [5] Failure Modes and Effects Analysis (FEMA) of Welded Stainless Steel Canisters for Dry Cask Storage Systems, EPRI, 3002000815, Palo Alto, CA, 2013 [6] S.Chu, Flaw Growth and Flaw Tolerance Assessment for Dry Cask Storage Canisters, EPRI, 3002002785, October 2014 [7] Basis of Spent Nuclear Fuel Storage, Central Research Institute of Electric Power Industry TOKYO, 2015 [8] Susceptibility Assessment Criteria for Chloride Induced Stress Corrosion Cracking(CISCC) of Welded Stainless Steel Canisters for Dry Cask Storage Systems, EPRI, 3002005371, Palo Alto, CA, 2015 [9] R.Parrott, H.Pitts. “Chloride stress corrosion cracking in austentic stainless steel-recommendations for assessing risk, structural integrity,” Health and Safety Executive, (2011). [10] Stress Corrosion Cracking in Light Water reactors: Good Practices and Lessons Learned, International Atomic Energy Agency.No.NP-T-3.13, VIENNA (2011)3-5 [11] ASTM G193-NACE 12C, “Standard Terminology and Acronyms Relating to Corrosion,” NACE International,1440 South Creek Drive Houston, TX USA 77084-4906 [12] M. G. Fortana, Corrosion Engineering, 3rded, McGraw-Hill Book Company, 1987 [13] Akio Kosaki, “Evaluation method of corrosion lifetime of conventional stainless steel canister under oceanic air environment”, Nuclear Engineering and Design, (2008) 1233-1240. [14] Effects of Marine Environments on Stress Corrosion Cracking of Austenitic Stainless Steels, EPRI, 2005 [15] A. Kosaki, “Evaluation method of corrosion lifetime of conventional stainless steel canister under oceanic air environment”, Nuclear Engineering and Design, 238(5), (2008) [16] M. Mayuzumi, Jun-ichi Tani. “Chloride induced stress corrosion cracking of candidate canister materials for dry storage of spent fuel”, Nuclear Engineering and Design, 238(5), (2008) 1227-1232 [17] Greg Oberson. “Assessment of Stress Corrosion Cracking Susceptibility for Austenitic Stainless Steels Exposed to Atmospheric Chloride and Non- Chloride Salts” Nuclear Regulatory Research, (2013) [18] R. C. Newman, E. M. Franz. “Growth and Repassivation of Single Corrosion Pits in Stainless steel,” The Journal of Science and Engineering, (1984) 325-330. [19] G. S. Frankel. “Pitting Corrosion of Metals A Review of the Critical Factors” , Journal of the Electrochemical Society, 145(6), (1998) 2186-2198 [20] H.-H. Strehblow, “Nucleation and Reppasivation of Corrosion Pits for Pitting on Iron and Nickel ”, Materials and Corrosion, (1976) 792-799 [21] H.-H. Strehblow, P. Marcus,J. Oudar, Corrosion Mechanisms in Theory and Practice”, 1995 [22] T. P. Hoar, D. C. Mears, and G. P. Rothwell. “The relationships between anodic passivity, brightening and pitting, ” Corrosion Science, 5, (1965) 279-289. [23] J. A. Richardson, G. C. Wood, “A study of the pitting corrosion of Al by scanning electron microscopy”, Corrosion Science, 5, (1965) 279-289. [24] G. S. Frankel, Tianshu Li, J. R. Scully, “ Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability” , Journal of The Electrochemical Society, 164(4), (2017) 180-181 [25] M. A. Baker, J. E. Castle. “The Initiation of Pitting Corrosion of Stainless Steel at Oxide Inclusions”, Corrosion Science, 33(8), (1992) 1295-1312 [26] J. E. Castle, R. Ke. “Studies by auger-spectroscopy of pit initiation at the site of inclusions in stainless-steel” Corrosion Science, (1990) 409-428 [27] M. A. Baker, J. E. Castle. “ The Initiation of Pitting Corrosion at MnS Inclusions”, Corrosion Science, 34(4), (1993) 667-682 [28] Izumi Muto, Yuta Izumiyama, Nobuyoshi Hara, “Microelectrochemical Measurements of Dissolution of MnS Inclusions and Morphological Observation of Metastable and Stable Pitting on Stainless Steel”, Journal of The Electrochemical Society, 154(8), (2007) 439-444 [29] Shufeng Yang, Mengjing Zhao, Jie Feng, Jingshe Lin, Chengsong Liu. “Induced-Pitting Behaviors of MnS Inclusions in Steel”, High Temperature Materials and Processes, (2018) 1001-1016 [30] Dr. Dmitri Kopeliovich. “Pitting Corrosion”, 2018 <http://www.substech.com/doku.php?id=pitting_corrosion> [31] ASTM G46-94, “Standard Guide for Examination and Evaluation of pitting Corrosion, ” (2018). [32] Sri Hastuty, Atsushi Nishikata, Tooru Tsuru. “Pitting corrosion of Type 430 stainless steel under chloride solution droplet, ” Corrosion Science, 52, (2010) 2035-2043. [33]蔡立宏、羅建明、柯正龍、賴瑞應、黃宇謙, 2019年臺灣大氣腐蝕劣化因子調查研究資料年報, 交通運輸研究所, May 2020 [34]張惠雲, 乾式貯存密封鋼筒材料應力腐蝕劣化發展評估之研究-第三章密封鋼筒不銹鋼材料SCC 發展評估研究, 行政院原子能委員會放射性物料管理局委託研究計畫研究報告, December 2016 [35] Yung-Shin Tseng, Chu Ching Hau, Jong-Rong Wang, Developing a Re-Inspection Planning Method for CI-SCC in Chinshan ISFSI [36]施純寬、曾永信, 乾式貯存設施設計壽命期間熱傳行為分析, 行政院原子能委員會放射性物料管理局委託研究計畫期末報告, 計畫編號 : 103FCMA001, 2014 [37]施純寬, 核二廠乾式貯存設施設計壽命期間熱傳行為分析, 行政院原子能委員會放射性物料管理局委託研究計畫期末報告, 計畫編號: 104FCMA011, 2015 [38]台電公司第一與第二核能發電廠乾式貯存設施安全分析報告 [39] G. Oberson, D. Dunn, T. Mintz, et al., “US NRC-Sponsored Research on Stress Corrosion Cracking Susceptibility of Dry Storage Canister Materials in Marine Environments”, WM2013 Conference, 2013 [40] J. i. Tani, M. Mayuzumi, N. Hara, “Stress corrosion cracking of stainless-steel canister for concrete cask storage of spent fuel”, Journal of Nuclear Materials, 379, (2008) 42-47 [41] M. M. Bayssie. Atmospheric Stress Corrosion Cracking Susceptibility of Welded and Unwelded 304, 304L, and 316L Austenitic Stainless steels Commly used for Dry Cask Storage Containers Exposed to Marine Environments, NRC, NUREG/CR-7030, October 2010 [42] Evaluation of the Frequencies for Canister Inspections for SCC, U.S. Department of Energy Used Fuel Disposition Campaign, February 2016 [43] Analysis of Dust Deliquescence for FEP Screening, Sandia National Laboratories, ANLEBS-MD-000074 Rev.01, 2008 [44] Yusuke Tsutsumi, Atsushi Nishikata, Tooru Tsuru. “Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solution”, Corrosion Science, (2007) 1394-1407 [45] Steven R. Street, Na Mi, Angus J. M. C. Cook, et al. “Atmospheric pitting corrosion of 304L stainless steel: the role of highly concentrated chloride solutions”, Faraday Discuss., (2015) 251-265 [46] T. Prosek, D. Thierry, et al. “Low-Temperature Stress Corrosion Cracking of Austenitic and Duplex Stainless Steels Under Chloride Deposits”, NACE corrosion science, (2014) 1052-1063. [47] T. Prosek, A. Iversen, C. Taxén, D. Thierry. “Low-Temperature Stress Corrosion Cracking of Stainless Steels in the Atmosphere in the Presence of Chloride Deposits”, NACE corrosion science, (2009) 105-117 [48] C.R. Bryan, D.G. Enos, Understanding the Environment on the Surface of Spent Nuclear Fuel Interim Storage Containers, SAND2013-8487C, October 2013 [49] C.R. Bryan, D.G. Enos, Analysis of Dust Samples Collected from Spent Nuclear Fuel Interim Storage Containers at Hope Creek, Delaware and Diablo Canyon, California, SAND2014-16383, July 2014 [50] ASTM D141-98. “Standard Practice for the Preparation of Substitute Ocean Water,” (Reapproved 2013) 105-117 [51] Liya Guo, Na Mi, Haval Mohammed-Ali, et al. “Effect of Mixed Salts on Atmospheric Corrosion of 304 Stainless steel”, Journal of The Electrochemical Society, 166(11), (2019) C3010-C3014 [52] T. Sacgusa, M. WATARU, H. Takeda,and K. Shirai, Spent Fuel Storage in Japan and World, Symposium for Interim Storage of Nuclear Spent Fuel, Central Research Institute of Electric Power Industry CR, 2016 [53] M. Goto, K. Shirai. “Current Status of research on stress corrosion cracking of stainless steel canister for concrete cask”, Extended Storage Collaboration Program(ESCP) Meeting, 2012 [54] Na Mi, Synchrotron X-ray Studies of Atmospheric Pitting Corrosion of Stainless steel, August 2013 [55] ASTM G30-97(2016). “Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens,” ASTM International, West Conshohocken, PA, (2016) [56] G.H. Aydog˘du, M.K. Aydinol. “Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel”, Corrosion Science, (2016) 3565-3583. [57] JEOL. “JSM-7610F Schottky Field Emission Scanning Electron Microscope,” November (2018) <http://www.jeol.co.jp/en/products/details/JSM-7610F.html> [58] 莊ㄧ全、黃暉升、張憲彰, 雷射掃描共軛焦顯微鏡, 科儀新知 24(6), (2009) 71:86 [59] Major Instruments Co., Ltd. “LEICA Confocal Laser Scanning Microscope Technical & Application”, August 2000 [60] SPECTRO. “SPECTROLAB–Ultimate performance for the next generation of metal analysis”, June 2015
|