帳號:guest(3.145.176.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭雅云
作者(外文):CHENG, Ya-Yun
論文名稱(中文):乾貯用沃斯田鐵系不銹鋼於沿海環境下的腐蝕行為
論文名稱(外文):Austenitic Stainless Steels Used in Dry Storage Canister Exposed to simulated Marine Environment
指導教授(中文):葉宗洸
王美雅
指導教授(外文):Yeh, Tsung-Kuang
Wang, Mei-Ya
口試委員(中文):歐陽汎怡
馮克林
口試委員(外文):Ouyang, Fan-Yi
Fong, Clinton
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011520
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:130
中文關鍵詞:氯離子誘發應力腐蝕龜裂U-bend乾式貯存筒氯鹽沉積
外文關鍵詞:Dry storage systemAustenitic stainless steelsU-bend TestMagnesium chlorideStress corrosion cracking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:71
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
目前役期屆滿的核一廠進入除役階段,用過核燃料的貯存安全問題實為重要,在用過燃料池存放5-10年的用過核燃料,將移至乾式貯存設施進行中期貯存,此為適宜且安全的暫時貯存方法。目前核一廠第一期乾貯設施使用INER-HUP系統,內部密封鋼筒的材料為304L沃斯田鐵系不銹鋼,然而沃斯田鐵系不銹鋼在在富含氯離子及水氣的環境中,可能會發生孔蝕及應力腐蝕龜裂等腐蝕行為,為了確保乾貯系統的結構完整性,本研究著力於探討304、304L、316L不銹鋼於沿海環境中的腐蝕行為。
本實驗中使用固溶熱處理及敏化熱處理之304、304L、316L不銹鋼U-bend試片,以週期性噴灑氯化鎂、合成海鹽及混合氯鹽水溶液,來模擬沿海環境中氯鹽沉積的情形,並於40、60、80oC,固定相對濕度40%的環境中進行加速腐蝕試驗。根據裂縫形貌及並量分析的結果,在40oC及60oC下,304及304L不銹鋼表面的腐蝕型態主要為裂縫的生成,316L不銹鋼以孔蝕的生成居多;在80oC下,只有在316L不銹鋼表面觀察到裂縫生成,從橫截面觀察中可以發現裂縫有分支的情形,為應力腐蝕龜裂的特性。304及304L不銹鋼表面的腐蝕型態則以均勻腐蝕為主。此外,在40oC、相對濕度40%下進行合成鹽類及混合氯鹽的沉積,所有不銹鋼試片都沒有發現應力腐蝕龜裂的現象。
  Austenitic stainless steel is the general material used in the canister of dry storage system, including Type 304, 304L, 316L stainless steels. When the spent fuel storage installations located nearby a coastal site, these types of austenitic stainless steel are prone to chloride induced stress corrosion cracking (CISCC) in aggressive environment. Therefore, the purpose of this work is to evaluate the susceptibility to chloride induced stress corrosion cracking of candidate canister materials by using U-bend tests in simulated coastal atmospheric environments. The U-bend specimens were under periodic spraying with magnesium chloride solution (MgCl2), mixed chloride solution (NaCl and MgCl2) and synthetic sea-salt solution at different temperatures but constant relative humidity of 40% for 1500 hours. Prior to the U-bend tests, specimens were prepared and underwent various pretreatments, including solution annealing and thermal sensitization.
After the tests, specimens were examined with the scanning electron microscope (SEM) in order to observe the morphology and measure the length of cracks. According to the results of 40oC, except for sensitized 304 and 304L specimens, no cracks longer than 500μm were observed in the other U-bend specimens. The difference of resistance to CISCC between solution annealed and sensitized specimens are significant at low temperature. The number of cracks on the sensitized specimens was more than solution-annealed ones, mainly from the increasing of the micro-cracks and pits. The cracks observed on the sensitized specimens were longer than the solution annealed specimens because of the intergranular corrosion cracking. There are more cracks and pits observed at 60oC under magnesium chloride periodic spraying than 40oC. At higher temperature 80oC, pitting coalescence is the major corrosion behavior instead of stress corrosion cracking. The results of mixed chloride and synthetic sea-salt showed that there was no SCC observed on all specimens.
目錄
第1章 前言 1
1.1 研究背景 1
1.2 研究動機 2
第2章 文獻回顧 4
2.1 乾式貯存筒的介紹 4
2.2 我國乾貯設施介紹 5
2.3 沃斯田鐵系不銹鋼的腐蝕行為之一-氯離子誘發應力腐蝕龜裂 8
2.3.1 敏感性材料對應力腐蝕龜裂的影響 10
2.3.2 應力對應力腐蝕龜裂的影響 11
2.3.3 腐蝕性環境對應力腐蝕龜裂的影響 12
2.4 沃斯田鐵系不銹鋼的腐蝕行為之二-孔蝕 14
2.4.1 孔蝕的起始-氯離子去鈍化、破壞鈍態層 15
2.4.2 孔蝕的起始-MnS的溶解 16
2.4.3 孔蝕的電化學反應 19
2.5 沃斯田鐵系不銹鋼的腐蝕行為之三-大氣腐蝕 21
2.6 台灣氯鹽沉積量 23
2.7 乾貯筒環境 25
2.7.1 密封鋼筒表面溫度 25
2.7.2 密封鋼筒表面濕度 26
2.8 探討環境因子的相關文獻彙整 28
2.8.1 溫度的影響 29
2.8.2 相對濕度的影響 31
2.8.3 氯鹽種類的影響 34
2.8.4 氯鹽沉積量的影響 38
2.8.5 實驗時間的影響 41
第3章 實驗設備及步驟 44
3.1 實驗方法與流程 44
3.2 實驗試片設計及備製 45
3.3 氯鹽沉積與模擬沿海環境設置 48
3.3.1 實驗設置圖 48
3.3.2 模擬沿海環境 49
3.4 分析方法 50
3.4.1 敏化程度分析 50
3.4.2 表面分析 52
3.4.3 深度分析 54
3.4.4 EDS / GDS 成分分析 55
第4章 結果與討論 56
4.1 氯鹽沉積量記錄 56
4.2 敏化程度分析 57
4.3 氯化鎂水溶液的實驗結果 58
4.3.1 尚未進行加速腐蝕實驗的U-bend試片表面觀察 58
4.3.2 不銹鋼形貌觀察 61
4.3.3 時間的影響 66
4.3.4 氯化鎂溶液濃度的影響 72
4.3.5 熱處理的影響 80
4.3.6 實驗溫度的影響 91
4.3.7 孔蝕深度量測與不銹鋼試片的橫截面觀察 103
4.4 混合鹽類溶液的實驗結果 111
4.4.1 合成海鹽的實驗結果 111
4.4.2 混和氯鹽的實驗結果 114
4.4.3 橫截面觀察結果 117
4.4.4 不同鹽類溶液的結果比較 119
第5章 結論 120
第6章 未來建議方向 122
參考文獻 123

[1]行政院原子能委員會, “乾式貯存管制-核能電廠用過核子燃料貯存表”
[2]葉宗洸、黃爾文、王美雅、陳岳泰、李郁萱、王盈之, “除役核電廠用過核燃料室內乾式貯存安全管制技術-子計畫二:除役核電廠用過核燃料室內乾式貯存之結構及密封管制技術研析期末報告”, 2017
[3]核能後端營運.“第一核能發電廠乾貯計畫安全分析-第一章綜合概述”, 2018
[4]核能後端營運.“第一核能發電廠乾貯計畫安全分析-第三章設施之設計準則”, 2018
[5] Failure Modes and Effects Analysis (FEMA) of Welded Stainless Steel Canisters for Dry Cask Storage Systems, EPRI, 3002000815, Palo Alto, CA, 2013
[6] S.Chu, Flaw Growth and Flaw Tolerance Assessment for Dry Cask Storage Canisters, EPRI, 3002002785, October 2014
[7] Basis of Spent Nuclear Fuel Storage, Central Research Institute of Electric Power Industry TOKYO, 2015
[8] Susceptibility Assessment Criteria for Chloride Induced Stress Corrosion Cracking(CISCC) of Welded Stainless Steel Canisters for Dry Cask Storage Systems, EPRI, 3002005371, Palo Alto, CA, 2015
[9] R.Parrott, H.Pitts. “Chloride stress corrosion cracking in austentic stainless steel-recommendations for assessing risk, structural integrity,” Health and Safety Executive, (2011).
[10] Stress Corrosion Cracking in Light Water reactors: Good Practices and Lessons Learned, International Atomic Energy Agency.No.NP-T-3.13, VIENNA (2011)3-5
[11] ASTM G193-NACE 12C, “Standard Terminology and Acronyms Relating to Corrosion,” NACE International,1440 South Creek Drive Houston, TX USA 77084-4906
[12] M. G. Fortana, Corrosion Engineering, 3rded, McGraw-Hill Book Company, 1987
[13] Akio Kosaki, “Evaluation method of corrosion lifetime of conventional stainless steel canister under oceanic air environment”, Nuclear Engineering and Design, (2008) 1233-1240.
[14] Effects of Marine Environments on Stress Corrosion Cracking of Austenitic Stainless Steels, EPRI, 2005
[15] A. Kosaki, “Evaluation method of corrosion lifetime of conventional stainless steel canister under oceanic air environment”, Nuclear Engineering and Design, 238(5), (2008)
[16] M. Mayuzumi, Jun-ichi Tani. “Chloride induced stress corrosion cracking of candidate canister materials for dry storage of spent fuel”, Nuclear Engineering and Design, 238(5), (2008) 1227-1232
[17] Greg Oberson. “Assessment of Stress Corrosion Cracking Susceptibility for Austenitic Stainless Steels Exposed to Atmospheric Chloride and Non- Chloride Salts” Nuclear Regulatory Research, (2013)
[18] R. C. Newman, E. M. Franz. “Growth and Repassivation of Single Corrosion Pits in Stainless steel,” The Journal of Science and Engineering, (1984) 325-330.
[19] G. S. Frankel. “Pitting Corrosion of Metals A Review of the Critical Factors” , Journal of the Electrochemical Society, 145(6), (1998) 2186-2198
[20] H.-H. Strehblow, “Nucleation and Reppasivation of Corrosion Pits for Pitting on Iron and Nickel ”, Materials and Corrosion, (1976) 792-799
[21] H.-H. Strehblow, P. Marcus,J. Oudar, Corrosion Mechanisms in Theory and Practice”, 1995
[22] T. P. Hoar, D. C. Mears, and G. P. Rothwell. “The relationships between anodic passivity, brightening and pitting, ” Corrosion Science, 5, (1965) 279-289.
[23] J. A. Richardson, G. C. Wood, “A study of the pitting corrosion of Al by scanning electron microscopy”, Corrosion Science, 5, (1965) 279-289.
[24] G. S. Frankel, Tianshu Li, J. R. Scully, “ Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability” , Journal of The Electrochemical Society, 164(4), (2017) 180-181
[25] M. A. Baker, J. E. Castle. “The Initiation of Pitting Corrosion of Stainless Steel at Oxide Inclusions”, Corrosion Science, 33(8), (1992) 1295-1312
[26] J. E. Castle, R. Ke. “Studies by auger-spectroscopy of pit initiation at the site of inclusions in stainless-steel” Corrosion Science, (1990) 409-428
[27] M. A. Baker, J. E. Castle. “ The Initiation of Pitting Corrosion at MnS Inclusions”, Corrosion Science, 34(4), (1993) 667-682
[28] Izumi Muto, Yuta Izumiyama, Nobuyoshi Hara, “Microelectrochemical Measurements of Dissolution of MnS Inclusions and Morphological Observation of Metastable and Stable Pitting on Stainless Steel”, Journal of The Electrochemical Society, 154(8), (2007) 439-444
[29] Shufeng Yang, Mengjing Zhao, Jie Feng, Jingshe Lin, Chengsong Liu. “Induced-Pitting Behaviors of MnS Inclusions in Steel”, High Temperature Materials and Processes, (2018) 1001-1016
[30] Dr. Dmitri Kopeliovich. “Pitting Corrosion”, 2018
<http://www.substech.com/doku.php?id=pitting_corrosion>
[31] ASTM G46-94, “Standard Guide for Examination and Evaluation of pitting Corrosion, ” (2018).
[32] Sri Hastuty, Atsushi Nishikata, Tooru Tsuru. “Pitting corrosion of Type 430 stainless steel under chloride solution droplet, ” Corrosion Science, 52, (2010) 2035-2043.
[33]蔡立宏、羅建明、柯正龍、賴瑞應、黃宇謙, 2019年臺灣大氣腐蝕劣化因子調查研究資料年報, 交通運輸研究所, May 2020
[34]張惠雲, 乾式貯存密封鋼筒材料應力腐蝕劣化發展評估之研究-第三章密封鋼筒不銹鋼材料SCC 發展評估研究, 行政院原子能委員會放射性物料管理局委託研究計畫研究報告, December 2016
[35] Yung-Shin Tseng, Chu Ching Hau, Jong-Rong Wang, Developing a Re-Inspection Planning Method for CI-SCC in Chinshan ISFSI
[36]施純寬、曾永信, 乾式貯存設施設計壽命期間熱傳行為分析, 行政院原子能委員會放射性物料管理局委託研究計畫期末報告, 計畫編號 : 103FCMA001, 2014
[37]施純寬, 核二廠乾式貯存設施設計壽命期間熱傳行為分析, 行政院原子能委員會放射性物料管理局委託研究計畫期末報告, 計畫編號: 104FCMA011, 2015
[38]台電公司第一與第二核能發電廠乾式貯存設施安全分析報告
[39] G. Oberson, D. Dunn, T. Mintz, et al., “US NRC-Sponsored Research on Stress Corrosion Cracking Susceptibility of Dry Storage Canister Materials in Marine Environments”, WM2013 Conference, 2013
[40] J. i. Tani, M. Mayuzumi, N. Hara, “Stress corrosion cracking of stainless-steel canister for concrete cask storage of spent fuel”, Journal of Nuclear Materials, 379, (2008) 42-47
[41] M. M. Bayssie. Atmospheric Stress Corrosion Cracking Susceptibility of Welded and Unwelded 304, 304L, and 316L Austenitic Stainless steels Commly used for Dry Cask Storage Containers Exposed to Marine Environments, NRC, NUREG/CR-7030, October 2010
[42] Evaluation of the Frequencies for Canister Inspections for SCC, U.S. Department of Energy Used Fuel Disposition Campaign, February 2016
[43] Analysis of Dust Deliquescence for FEP Screening, Sandia National Laboratories, ANLEBS-MD-000074 Rev.01, 2008
[44] Yusuke Tsutsumi, Atsushi Nishikata, Tooru Tsuru. “Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solution”, Corrosion Science, (2007) 1394-1407
[45] Steven R. Street, Na Mi, Angus J. M. C. Cook, et al. “Atmospheric pitting corrosion of 304L stainless steel: the role of highly concentrated chloride solutions”, Faraday Discuss., (2015) 251-265
[46] T. Prosek, D. Thierry, et al. “Low-Temperature Stress Corrosion Cracking of Austenitic and Duplex Stainless Steels Under Chloride Deposits”, NACE corrosion science, (2014) 1052-1063.
[47] T. Prosek, A. Iversen, C. Taxén, D. Thierry. “Low-Temperature Stress Corrosion Cracking of Stainless Steels in the Atmosphere in the Presence of Chloride Deposits”, NACE corrosion science, (2009) 105-117
[48] C.R. Bryan, D.G. Enos, Understanding the Environment on the Surface of Spent Nuclear Fuel Interim Storage Containers, SAND2013-8487C, October 2013
[49] C.R. Bryan, D.G. Enos, Analysis of Dust Samples Collected from Spent Nuclear Fuel Interim Storage Containers at Hope Creek, Delaware and Diablo Canyon, California, SAND2014-16383, July 2014
[50] ASTM D141-98. “Standard Practice for the Preparation of Substitute Ocean Water,” (Reapproved 2013) 105-117
[51] Liya Guo, Na Mi, Haval Mohammed-Ali, et al. “Effect of Mixed Salts on Atmospheric Corrosion of 304 Stainless steel”, Journal of The Electrochemical Society, 166(11), (2019) C3010-C3014
[52] T. Sacgusa, M. WATARU, H. Takeda,and K. Shirai, Spent Fuel Storage in Japan and World, Symposium for Interim Storage of Nuclear Spent Fuel, Central Research Institute of Electric Power Industry CR, 2016
[53] M. Goto, K. Shirai. “Current Status of research on stress corrosion cracking of stainless steel canister for concrete cask”, Extended Storage Collaboration Program(ESCP) Meeting, 2012
[54] Na Mi, Synchrotron X-ray Studies of Atmospheric Pitting Corrosion of Stainless steel, August 2013
[55] ASTM G30-97(2016). “Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens,” ASTM International, West Conshohocken, PA, (2016)
[56] G.H. Aydog˘du, M.K. Aydinol. “Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel”, Corrosion Science, (2016) 3565-3583.
[57] JEOL. “JSM-7610F Schottky Field Emission Scanning Electron Microscope,” November (2018)
<http://www.jeol.co.jp/en/products/details/JSM-7610F.html>
[58] 莊ㄧ全、黃暉升、張憲彰, 雷射掃描共軛焦顯微鏡, 科儀新知 24(6), (2009) 71:86
[59] Major Instruments Co., Ltd. “LEICA Confocal Laser Scanning Microscope Technical & Application”, August 2000
[60] SPECTRO. “SPECTROLAB–Ultimate performance for the next generation of metal analysis”, June 2015

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *