|
Uncategorized References 1. Best Thermal Pastes – Buyers Guide & Reviews 2020. 2. Removing Components from Circuit Board | Soldering. 3. Source: Tanaka Holdings Co., Ltd. TANAKA Develops Silver Paste Able to Form Electronic Circuits Using UV Curing to Support Screen Printing. 4. 科技大觀園_神奇的水膠. Available from: https://scitechvista.nat.gov.tw/c/sgY1.htm. 5. Shimura, K. and H. Yoshida, Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ. Sci., 2011. 4: p. 2467-2481. 6. Smithells Metals Reference Book, Sixth Edition. 7. Seh, Z.W., et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355(6321): p. eaad4998. 8. Aharony, D.S.A., Introduction To Percolation Theory: Second Edition. 9. 冯清福,孟宪伟,李世鸿*,梁云,李俊鹏, 导电填料对电子浆料性能影响的研究进展. 10. 陶宇, 夏., 张国庆, 吴希俊, 苏浩, 梁平辉, 吴海平, 陶国良, 填料长径比对导电胶渗流阈值的影响. 11. Heo, S.I., et al., Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of PEM fuel cells. Advanced Composite Materials, 2006. 15(1): p. 115-126. 12. ,田民波, 熊.杨.吴.郑., 银粉形貌与尺寸对导电胶电性能的影响. 13. Daoqiang, L., Q.K. Tong, and C.P. Wong, Mechanisms underlying the unstable contact resistance of conductive adhesives. IEEE Transactions on Electronics Packaging Manufacturing, 1999. 22(3): p. 228-232. 14. Xu, X., et al., Electroless silver coating on fine copper powder and its effects on oxidation resistance. Materials Letters, 2003. 57(24): p. 3987-3991. 15. Hai, H.T., et al., Developing process for coating copper particles with silver by electroless plating method. Surface and Coatings Technology, 2006. 201(6): p. 3788-3792. 16. Grouchko, M., A. Kamyshny, and S. Magdassi, Formation of air-stable copper–silver core–shell nanoparticles for inkjet printing. Journal of Materials Chemistry, 2009. 19(19): p. 3057-3062. 17. Tsuji, M., et al., Syntheses of Ag/Cu alloy and Ag/Cu alloy core Cu shell nanoparticles using a polyol method. CrystEngComm, 2010. 12(11): p. 3900-3908. 18. Tsakiris, V., W. Kappel, and G. Alecu, Solid state diffusion welding of Cu-Fe/Al/Ag and Al-Ni dissimilar metals. Journal of Optoelectronics and Advanced Materials, 2011. 13: p. 1176-1180. 19. Muzikansky, A., et al., Ag Dewetting in Cu@Ag Monodisperse Core–Shell Nanoparticles. The Journal of Physical Chemistry C, 2013. 117(6): p. 3093-3100. 20. Chee, S.-S. and J.-H. Lee, Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size. Journal of Materials Chemistry C, 2014. 2(27): p. 5372-5381. 21. Miyakawa, M., et al., Continuous syntheses of Pd@Pt and Cu@Ag core–shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement. Nanoscale, 2014. 6(15): p. 8720-8725. 22. 惠1,周继禹2,付仁春1,郭忠诚1, 黄., 太阳能电池正极浆料用超细Cu/Ag核壳金属粉制备. RARE METAL MATERIALS AND ENGINEERING, 2014. 23. Lee, C., et al., Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics. Nanotechnology, 2015. 26(45): p. 455601. 24. Stewart, I.E., et al., Synthesis of Cu–Ag, Cu–Au, and Cu–Pt Core–Shell Nanowires and Their Use in Transparent Conducting Films. Chemistry of Materials, 2015. 27(22): p. 7788-7794. 25. He, X., et al., A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement. Journal of Nanomaterials, 2016. 2016: p. 2127980. 26. Li, W., et al., Synthesis of stable CucoreAgshell&Ag particles for direct writing flexible paper-based electronics. RSC Advances, 2016. 6(67): p. 62236-62243. 27. Andal, V. and G. Buvaneswari, Effect of reducing agents in the conversion of Cu2O nanocolloid to Cu nanocolloid. Engineering Science and Technology, an International Journal, 2017. 20(1): p. 340-344. 28. Laloy, J., et al., Characterization of core/shell Cu/Ag nanopowders synthesized by electrochemistry and assessment of their impact on hemolysis, platelet aggregation, and coagulation on human blood for potential wound dressing use. Journal of Nanoparticle Research, 2017. 19(8): p. 266. 29. Pajor-Świerzy, A., et al., Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 521: p. 272-280. 30. Sakthisabarimoorthi, A., et al., Fabrication of Cu@Ag core–shell nanoparticles for nonlinear optical applications. Journal of Materials Science: Materials in Electronics, 2017. 28(6): p. 4545-4552. 31. Zhao, K., et al. Preparation of nano Cu@Ag core shell powder for electronic packaging. in 2017 18th International Conference on Electronic Packaging Technology (ICEPT). 2017. 32. Osowiecki, W.T., et al., Tailoring Morphology of Cu–Ag Nanocrescents and Core–Shell Nanocrystals Guided by a Thermodynamic Model. Journal of the American Chemical Society, 2018. 140(27): p. 8569-8577. 33. Shang, S., et al., Synthesis of Cu@Ag core–shell nanoparticles for characterization of thermal stability and electric resistivity. Applied Physics A, 2018. 124(7): p. 492. 34. Wu, B., et al., Preparation and Properties of High Density and High Coverage Silver-coated Copper Powder. Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2018. 32: p. 775-781. 35. Jiang, D.-H., et al., Facile Preparation of Cu/Ag Core/Shell Electrospun Nanofibers as Highly Stable and Flexible Transparent Conductive Electrodes for Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019. 11(10): p. 10118-10127. 36. Zhang, B., et al., Alloying and Embedding of Cu-Core/Ag-Shell Nanowires for Ultrastable Stretchable and Transparent Electrodes. ACS Applied Materials & Interfaces, 2019. 11(20): p. 18540-18547. 37. Zhang, Y., et al., PVP-Mediated Galvanic Replacement Synthesis of Smart Elliptic Cu–Ag Nanoflakes for Electrically Conductive Pastes. ACS Applied Materials & Interfaces, 2019. 11(8): p. 8382-8390. 38. Hai, H.T., H. Takamura, and J. Koike, Oxidation behavior of Cu–Ag core–shell particles for solar cell applications. Journal of Alloys and Compounds, 2013. 564: p. 71-77. 39. Ma, F. and J. Zhang, Recent progress in syntheses and applications of Cu@Ag core-shell nanoparticles. Journal of Physics: Conference Series, 2019. 1347: p. 012095. 40. Tsai, C.-H., et al., Thermal stability of Cu@Ag core–shell nanoparticles. Corrosion Science, 2013. 74: p. 123-129. 41. Zhang, B., et al., Large-Scale and Galvanic Replacement Free Synthesis of Cu@Ag Core–Shell Nanowires for Flexible Electronics. Inorganic Chemistry, 2019. 58. 42. Xia, X., et al., 25th Anniversary Article: Galvanic Replacement: A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties. Advanced Materials, 2013. 25(44): p. 6313-6333. 43. 條目: 維生素C. Available from: https://zh.wikipedia.org/wiki/%E7%BB%B4%E7%94%9F%E7%B4%A0C. 44. 沈銘原. https://scitechvista.nat.gov.tw/c/sT0o.htm. 2019.9. 45. 條目: 交叉鏈接. Available from: https://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B7%D0%B8%D0%BD%D0%B0?oldformat=true. 46. 公自轉機示意圖. Available from: http://www.britnix.com.tw/tech2.html. 47. Lab1st真空烘箱 Available from: https://www.lab1st.com/vacuum-drying-oven. 48. Giri, S. and A. Sarkar, Electrochemical Study of Bulk and Monolayer Copper in Alkaline Solution. Journal of The Electrochemical Society, 2016. 163: p. H252-H259. 49. Marenco, A.J., et al., Electrochemical properties of gas-generated silver nanoparticles in the presence of cyano- and chloride-containing compounds. Analyst, 2009. 134(10): p. 2021-2027. 50. Verma, A. and M.S. Mehata, Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. Journal of Radiation Research and Applied Sciences, 2016. 9(1): p. 109-115. 51. Hoar, T.P. and G.P. Rothwell, The potential/pH diagram for a copper-water-ammonia system: its significance in the stress-corrosion cracking of brass in ammoniacal solutions. Electrochimica Acta, 1970. 15(6): p. 1037-1045. |