帳號:guest(3.145.179.83)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許竹良
作者(外文):Hsu, Chu-Liang
論文名稱(中文):探討直流濺鍍和交流濺鍍沉積在玻璃基板之鉍薄膜之間的表面形貌
論文名稱(外文):To study the comparison in morphology of bismuth thin films deposited on the glass substrate using RF sputtering and DC sputtering deposition
指導教授(中文):李志浩
指導教授(外文):Lee, Chih-Hao
口試委員(中文):歐陽汎怡
湯茂竹
口試委員(外文):Ou Yang, Fan-Yi
Tang, Mau-Tsu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011515
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:90
中文關鍵詞:鉍薄膜同步輻射優選取向x光反射率表面粗糙度
外文關鍵詞:Bismuth thin filmsSynchrotron radiationPreferred orientationX-ray reflectivitySurface roughness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近來年,由於鉍的原子量較大帶有非常強的自旋霍爾效應,因此利用多層膜製備的鉍薄膜在自旋軌道扭矩裝置中具有很大的吸引力。我們的主要目標是如何製備出具有平滑表面的鉍薄膜,可以應用於改善自旋流轉換電荷流的效率。在我們的實驗中,我們使用直流和交流濺射在玻璃基板上生長鉍薄膜,並比較這兩種不同沉積技術的表面形貌變化。 X射線反射率用於量測出薄膜的粗糙度,厚度和電子密度。我們通過掃描式電子顯微鏡和X射線繞射來比較表面形貌和晶體性質。在實驗分析結果中,我們發現,在相同厚度下(12 ± 1 nm),直流濺鍍之鉍和氧化鉍的界面粗糙度為9.5 ± 4 Å而交流濺鍍為48.9 ± 8.5 Å,可能是因為原子敲擊效應和薄膜表面的大晶粒造成。我們也利用了X光吸收光譜證實非晶碳膜(厚度約為10 nm)之覆蓋層在長時間內並無法保護鉍薄膜不被氧化。從XRD結果,我們觀察到不同濺鍍方式之鉍薄膜有不同的優選取向,直流濺鍍和交流濺鍍分別為(003)和(012)方向,有可能是因為交流濺鍍之沉積速率較慢,吸附原子在薄膜表面有足夠的能量和時間有利於形成Bi(012)晶面,雙層與雙層之間鉍原子的鍵結較為穩定。而與之相反,直流濺射之沉積速率較快,吸附原子不利於形成(012)晶面,鉍原子與雙層內的三個最相鄰近原子形成穩定的鍵結,因此較有利於(003)方向的生長。
Recently, preparation of bismuth thin film is attractive in fabricating the spin-orbital torque device because of strongly spin Hall effect, using multilayer deposition method. How to make a thin bismuth thin film with smooth surface for spin-orbital torque device production is our main goal. In our work, we deposited bismuth thin film on glass substrate by DC and RF sputtering deposition and to compare the surface morphology change. X-ray reflectivity is used to examine the thin film roughness, thickness and electron density. We measured surface morphology and crystal properties by scanning electron spectroscopy and X-ray diffraction. In the experiment analysis result, we found that bismuth thin films deposited by DC sputtering deposition is smoother than that deposited by RF sputtering deposition in the same thickness because of the atomic peening effect and large grain on the surface of thin films. We confirm oxidation of top layer of bismuth from the energy shift of X-ray absorption spectroscopy in bismuth thin films coating with only 9 nanometer carbon layer. From the XRD result, we also found that the preferred orientation is (012) deposited by RF sputtering deposition and the preferred orientation is (003) by DC sputtering deposition. The different energy of sputtered Bi atoms by DC and RF magnetron sputtering methods might cause these subtle morphology difference.

摘要-------------------------i
Abstract-------------------------ii
致謝-------------------------iii
目錄-------------------------iv
圖目錄-------------------------vi
表目錄-------------------------viii
第一章 緒論-------------------------1
1.1 前言-------------------------1
1.2 文獻回顧與介紹-------------------------3
1.3 薄膜成長理論-------------------------4
1.3.1 薄膜成長的表面行為[21] [22]-------------------------4
1.3.2 成長模型[27]-------------------------8
1.3.2.1 隨機沉積模型(Random deposition model, RD)-------------------------8
1.3.2.2 表面鬆弛的隨機成長模型(Random deposition with relaxation model, RDR)-------------------------8
1.3.2.3 受限實體模型(Restricted solid on solid model, RSOS)-------------------------9
1.3.2.4 彈道沉積模型(Ballistic deposition model, BD)-------------------------9
1.3.3 薄膜的尺度效應[27][30]-------------------------10
1.3.3.1 粗糙度和其指數的介紹[27]-------------------------11
1.3.3.2 EW(Edward-Wilkinson)方程式與KPZ(Kardar-Parisi-Zhang)方程式[27] [31] [32]-------------------------13
1.3.4 原子敲擊效應 (Atomic penning effect) [33]-------------------------16
第二章實驗方法與儀器原理-------------------------19
2.1 濺鍍原理(Sputtering)-------------------------19
2.1.1 磁控濺鍍系統(Magnetic Sputtering System)-------------------------19
2.1.2 直流濺鍍系統(Direct Current sputtering)-------------------------20
2.1.3 交流濺鍍系統(RF sputtering)-------------------------20
2.2 同步輻射光源(Synchrotron Radiation Light Source)-------------------------22
2.3 X光反射率(X-ray Reflectivity) [44] [45]-------------------------24
2.3.1 X光反射率之演進-------------------------26
2.3.2 X光反射率之分析及相關式-------------------------27
2.4 X光吸收光譜(X-ray Absorption Spectroscopy) [44]-------------------------30
2.5 掃描式電子顯微鏡(Scanning Electron Microscope)-------------------------34
2.5.1 電子束與試片間的交互作用-------------------------35
2.5.2 二次電子(Secondary Electrons ,SE)-------------------------36
2.5.3 背向散射電子(Backscattered Electrons ,BSE)-------------------------37
2.6 薄膜的製備-------------------------38
第三章結果與討論-------------------------39
3.1 鉍薄膜晶體結構分析-------------------------40
3.2 鉍薄膜X光全反射分析-------------------------51
3.3 鉍薄膜之表面形貌分析-------------------------65
3.4 覆蓋層於鉍薄膜XAS分析-------------------------68
3.5 臨場加熱之鉍薄膜分析-------------------------70
第四章結論-------------------------74
未來展望-------------------------76
文獻參考-------------------------77
附錄A-------------------------81
附錄B-------------------------90

[1] H. Hattab et al., "Epitaxial Bi(111) films on Si(001): Strain state, surface morphology, and defect structure," Thin Solid Films, 2008.
[2] J. Chang, H. Kim, J. Han, M. H. Jeon, and W. Y. Lee, "Microstructure and magnetoresistance of sputtered bismuth thin films upon annealing," J. Appl. Phys, 2005.
[3] H. Mönig et al., "Structure of the (111) surface of bismuth: LEED analysis and first-principles calculations," Phys. Rev. B, 2005.
[4] C. R. Ast and H. Höchst, "Fermi Surface of Bi(111) Measured by Photoemission Spectroscopy," Phys. Rev. Lett., 2001.
[5] T. Hirahara et al., "Quantum well states in ultrathin Bi films: Angle-resolved photoemission spectroscopy and first-principles calculations study," Phys. Rev. B, 2007.
[6] D.-H. Kim, S.-H. Lee, J.-K. Kim, and G.-H. Lee, "Structure and electrical transport properties of bismuth thin films prepared by RF magnetron sputtering," Appl. Surf. Sci., 2006.
[7] A. Jacquot, M. O. Boffoué, B. Lenoir, and A. Dauscher, "The effect of different scanning schemes on target and film properties in pulsed laser deposition of bismuth," Appl. Surf. Sci., 2000.
[8] Shunhao Xiao, "Bi(111) Thin Film with Insulating Interior but Metallic Surfaces,"Phys. Rev. Lett., 2012
[9] J.C. Rojas Sa´nchez, "Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials," Nature Communications, 2013.
[10] S. Sangiao et al., "Control of the spin to charge conversion using the inverse Rashba-Edelstein effect," Appl. Phys. Lett., 2015
[11] L. Kumari, S.-J. Lin, J.-H. Lin, Y.-R. Ma, P.-C. Lee, and Y. Liou, "Effects of deposition temperature and thickness on the structural properties of thermal evaporated bismuth thin films," Appl. Surf. Sci., 2007.
[12] Y. Ahn, Y.-H. Kim, S.-I. Kim, and K.-H. Jeong, "Thickness dependent surface microstructure evolution of bismuth thin film prepared by molecular beam deposition method," Curr. Appl. Phys., 2012.
[13] Nan Wang, "Investigation of growth characteristics and semimetal–semiconductor transition of polycrystalline bismuth thin films, " IUCrJ,
2020
[14] M. O. Boffoué, B. Lenoir, A. Jacquot, H. Scherrer, A. Dauscher, and M. Stölzer, "Structure and transport properties of polycrystalline Bi films," J. Phys. Chem. Solids, 2000.
[15] J.-H. Hsu, Y.-S. Sun, H.-X. Wang, P. C. Kuo, T.-H. Hsieh, and C.-T. Liang, "Substrate dependence of large ordinary magnetoresistance in sputtered Bi films," J. Magn. Magn. Mater., 2004.
[16] Claudia Milena Bedoya-Hincapié, "Structural and morphological behavior of bismuth thin films grown through DC-magnetron sputtering," Ingeniare. Revista chilena de ingeniería, 2015
[17] S. A. Stanley and M. D. J. A. P. A. Cropper, "Structure and resistivity of bismuth thin films deposited by pulsed DC sputtering," Appl. Phys. A., 2015.
[18] T.-W. Huang, H.-Y. Lee, Y.-W. Hsieh, and C.-H. Lee, "X-ray study of the surface morphology of crystalline and amorphous tantalum peroxide thin films prepared by RF magnetron sputtering," J. Cryst. Growth, 2002.
[19] C.-H. Lee and Y.-D. Tzeng, "Study of the morphology of ultra-thin Pt films as the anode of an organic light emitting display," Thin Solid Films, 2009.
[20] C.-H. Lee and S.-Y. Tseng, "In situ X-ray reflectivity measurement of thin film growth during vacuum deposition," Appl. Surf. Sci., 1996.
[21] Tansel Karabacak, "Thin-film growth dynamics with shadowing and re-emission effects,"Nanophotonics, 2011
[22] 黃子文, "利用臨場 X 光反射率量測法研究Ta2O5薄膜結構與表面形貌之變," 國立清華大學碩士論文, 2002
[23] R. K. Heilmann and R. M. Suter, "In situ specular and diffuse x-ray reflectivity study of growth dynamics in quench-condensed xenon films," Phys. Rev. B, 1999.
[24] D. M. Mattox, "Particle bombardment effects on thin‐film deposition," 1989.
[25] T. Karabacak, H. Guclu, and M. Yuksel, "Network behavior in thin film growth dynamics," Phys. Rev. B, 2009.
[26] 吳自勤, "薄膜生長, "科學出版社,2013
[27] Timotej Lemut, " Stochastic dynamics of surfaces and interfaces, " University of Ljubljana, 2018
[28] R. Livi and P. Politi, "Nonequilibrium statistical physics : a modern perspective, " Cambridge university, 2017.
[29] Pictures retrieved from. http://slideplayer.com/slide/7857723/. Accessed: 31.5.2018.
[30] F. Family, "Dynamic scaling and phase transitions in interface growth," Physica A, 1990.
[31] S. F. Edwars and D. Wilkinson, "The surface statistics of a granular aggregate, "Proc. R. Soc. Lond. A, 1982.
[32] M. Kardar, G. Parisi, and Y.-C. Zhang, "Dynamic scaling of growing interfaces, " Phys. Rev. Lett., vol. 56, 1986.
[33] 范毓殿, " 薄膜濺射沉積過程中的原子噴丸效應, " Vacuum Science and Technology(China), 1996
[34] J. A. Thornton and D. W. Hoffman, " Internal stresses in metallic films deposited by cylindrical magnetron sputtering, " Thin Solid Films, 1979
[35] J. A. Thornton and D. W. Hoffman, " Stress-related effects in thin films, " Thin Solid Films, 1989
[36] F. M. D'HEURLE, " Aluminum Films Deposited by rf Sputtering, " Metallurgical Transciation, 1970
[37] C. T. Wu and J. W. Hafstorm, "High-rate magnetron sputtering of high
Tc Nb3Sn films, " J. Vac. Sci. Technol., 1977
[38] R. E. Somekh, " Calculations of thermalization during the sputter
deposition process, " Vacuum, 1984
[39] R. S. Robinson, " Energetic binary collisions in rare gas plasmas, "
J. Vac. Sci. Technol., 1978
[40] R. E. Somekh, " The thermalization of energetic atoms during the sputtering process, " J. Vac. Sci. Technol., 1984
[41] Pictures retrieved from. https://www.polifab.polimi.it/equipments/orion-8/
[42] Pictures retrieved from. http://sainanotech.com/rf-and-dc-sputtering-system.php
[43] Pictures retrieved from. https://www.nsrrc.org.tw/chinese/lightsource.aspx
[44] 汪建明主編, "材料分析," 中國材料學會,1998.
[45] 蔡增光, 科儀新知, 24 (3), 91 (2012).
[46] 林文智, 科儀新知, 22 (2), 14 (2000).
[47] H. Kiessig, " Interference of X-rays in thick layers, " Ann. Phys., 1931
[48] L. G. Parratt, " Surface Studies of Solids by Total Reflection of X-Rays, " Phys. Rev., 1954
[49] Y. Yoneda, " Anomalous Surface Reflection of X Ray, " Phys. Rev., 1963
[50] L. Nevot and P. Croce, Revue, " Caractérisation des surfaces par réflexion rasante de rayons X. Application à l'étude du polissage de quelques verres silicates, " Phys. Appl., 1980
[51] M. Yasaka, " X-ray thin-film measurement techniques V . X-ray reflectivity measurement, "Rigaku Journal, 2010.
[52] Chih-Hao Lee, " X-ray study of the surface morphology of crystalline and amorphous tantalum peroxide thin films prepared by RF magnetron sputtering, " J. Cryst. Growth, 2002
[53] Ostwald, " Homogeneous nucleation and the Ostwald step rule, " Phys. Chem. Chem. Phys., 1999
[54] Tansel Karabacak, " Thin-film growth dynamics with shadowing and re-emission effects, " Nanophotonics, 2011.
[55] Félix Jiménez‐Villacorta, " Basic Principles of X‐ray Reflectivity in Thin Films, " Northeastern University, 2011
[56] A. Zebda, " Surface energy and hybridization studies of amorphous carbon surfaces, " Appl. Surf. Sci., 2008
[57] Jonnathan Medina-Ramos, " Structural Dynamics and Evolution of Bismuth Electrodes during Electrochemical Reduction of CO2 in Imidazolium-Based Ionic Liquid Solutions, " ACS Catal, 2017
[58] Yu. M. Koroteev, " First-principles investigation of structural and electronic properties of ultrathin Bi films, " Phys. Rev. B, 2008
[59] Maciej Jankowsk, " Controlling the growth of Bi(110) and Bi(111) films on an insulating substrate, " Nanotechnology, 2017
[60] T. Nagao, " Nanofilm Allotrope and Phase Transformation of Ultrathin Bi Film on Si (111)-7 x 7, " Phys. Rev. Lett., 2004
[61] J.C. Rojas Sanchez, "Spin-to-charge conversion using Rashba coupling at the
interface between non-magnetic materials, " Nature communications, 2013
[62] Di Yue, "Spin-to-Charge Conversion in Bi Films and Bi/Ag Bilayers, " Phys. Rev. Lett., 2018
[63] Pictures retrieved from. https://eng.thesaurus.rusnano.com/wiki/article1807

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *