|
[1] A. Meldrum, R. Haglund, L. Boatner, C.W. White, “Nanocomposite materials formed by ion implantation,” Advanced Materials 13(19), 1431-1444 (2001).
[2] Y.H. Su, Y.F. Ke, S.L. Cai, Q.Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light: Science & Applications 1(6), 1-5 (2012).
[3] M. Dhonde, K. Sahu, V. Murty, S.S. Nemala, P. Bhargava, “Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell,” Electrochimica Acta 249, 89-95 (2017).
[4] L.B. Luo, C. Xie, X.H. Wang, Y.Q. Yu, C.Y. Wu, H. Hu, K.Y. Zhou, X.W. Zhang, J.S. Jie, “Surface plasmon resonance enhanced highly efficient planar silicon solar cell,” Nano Energy 9, 112-120 (2014).
[5] S. Pillai, K. Catchpole, T. Trupke, M. Green, “Surface plasmon enhanced silicon solar cells,” Journal of applied physics 101(9), 093105 (2007).
[6] S. Nie, S.R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102-1106 (1997).
[7] W.A. Murray, W.L. Barnes, “Plasmonic materials,” Advanced materials 19(22), 3771-3782 (2007).
[8] E. Hutter, J.H. Fendler, “Exploitation of localized surface plasmon resonance,” Advanced materials 16(19), 1685-1706 (2004).
[9] G. Arnold, J. Borders, “Aggregation and migration of ion‐implanted silver in lithia‐alumina‐silica glass,” Journal of Applied Physics 48(4), 1488-1496 (1977).
[10] A. Agarwal, K. Christensen, D. Venables, D. Maher, G. Rozgonyi, “Oxygen gettering and precipitation at mev si+ ion implantation induced damage in silicon,” Applied physics letters 69(25), 3899-3901 (1996).
[11] M.S. Martin, N.D. Theodore, C.C. Wei, L. Shao, “Physical assembly of Ag nanocrystals on enclosed surfaces in monocrystalline Si,” Scientific Reports 4, 6744 (2015).
[12] J. Homola, S.S. Yee, G. Gauglitz, “Surface plasmon resonance sensors,” Sensors and actuators B: Chemical 54(1-2), 3-15 (1999).
[13] K.A. Willets, R.P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267-297 (2007).
[14] J. Homola, M. Piliarik. “Surface plasmon resonance based sensors,” Springer, 45-67 (2006).
[15] H.A. Atwater, A. Polman. “Materials for sustainable energy: A collection of peer-reviewed research and review articles from nature publishing group,” World Scientific, 1-11 (2011).
[16] M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature materials 9(3), 239-244 (2010).
[17] C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Applied physics letters 92(5), 053110 (2008).
[18] R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, “Design of plasmonic thin‐film solar cells with broadband absorption enhancements,” Advanced materials 21(34), 3504-3509 (2009).
[19] J.N. Munday, H.A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano letters 11(6), 2195-2201 (2011).
[20] H. Seo, Q. Chen, I. Rusakova, Z. Zhang, D. Wijesundera, S. Yeh, X. Wang, L. Tu, N. Ho, Y. Wu, “Formation of silver nanoparticles in silicon by metal vapor vacuum arc ion implantation,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 292(50-54 (2012).
[21] S. Estreicher, J. Hastings, P. Fedders, “Defect-induced dissociation of H2 in silicon,” Physical Review B 57(20), R12663 (1998).
[22] T. Höchbauer, A. Misra, M. Nastasi, J. Mayer, “Physical mechanisms behind the ion-cut in hydrogen implanted silicon,” Journal of Applied Physics 92(5), 2335-2342 (2002).
[23] X. Lu, S.S. K. Iyer, C. Hu, N.W. Cheung, J. Min, Z. Fan, P.K. Chu, “Ion-cut silicon-on-insulator fabrication with plasma immersion ion implantation,” Applied physics letters 71(19), 2767-2769 (1997).
[24] M. Bruel, B. Aspar, A.A. Herve, “Smart-Cut: a new silicon on insulator material technology based on hydrogen implantation and wafer bonding,” Japanese journal of applied physics 36(3S), 1636 (1997).
[25] X. Feng, Y. Huang, “Mechanics of smart-cut® technology,” International Journal of Solids and Structures 41(16-17), 4299-4320 (2004).
[26] B. Aspar, M. Bruel, M. Zussy, M, Cartier, “Transfer of structured and patterned thin silicon films using the Smart-Cut® process,” Electronics Letters 32(32), 1985-1986 (1996).
[27] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, R. Grimes, “Advanced inorganic chemistry,” Wiley New York (1988).
[28] G. Cerofolini, F. Corni, S. Frabboni, C. Nobili, G. Ottaviani, R. Tonini, “Hydrogen and helium bubbles in silicon,” Materials Science and Engineering: R: Reports 27(1-2), 1-52 (2000).
[29] V. Raineri, S. Campisano, “Secondary defect dissolution by voids in silicon,” Applied physics letters 69(12), 1783-1785 (1996).
[30] V. Raineri, S. Coffa, E. Szilagyi, J. Gyulai, E. Rimini, “He-vacancy interactions in si and their influence on bubble formation and evolution,” Physical Review B 61(2), 937 (2000).
[31] G. Cerofolini, G. Calzolari, F. Corni, C. Nobili, G. Ottaviani, R. Tonini, “Ultradense gas bubbles in hydrogen or helium-implanted (or coimplanted) silicon,” Materials Science and Engineering: B 71(1-3), 196-202 (2000).
[32] V. Raineri, A. Battaglia, E. Rimini, “Gettering of metals by He induced voids in silicon,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 96(1-2), 249-252 (1995).
[33] A. Battaglia, G. Fallica, G. Percolla, V. Raineri, “Gettering of metals by voids in silicon devices,” ESSDERC'94: 24th European Solid State Device Research Conference, 403-406 (1994).
[34] S. Myers, G. Petersen, D. Follstaedt, T. Headley, J. Michael, C. Seager, “Strong segregation gettering of transition metals by implantation-formed cavities and boron-silicide precipitates in silicon,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 120(1-4), 43-50 (1996).
[35] J.F. Ziegler, J.P. Biersack, M.D. Ziegler, “Stopping and Range of ions in Solids, 1,” Pergamon Press (1985).
[36] 陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠,材料電子顯微鏡學,科儀叢書 3,國家科學委員會精密儀器發展中心,中華民國八十三年
[37] J. Hastings, S. Estreicher, P.A. Fedders, “Vacancy aggregates in silicon,” Physical Review B 56(16), 10215 (1997).
[38] P.G. Coleman, “Activation energies for vacancy migration, clustering and annealing in silicon,” Journal of Physics: Conference Series 265(1), 012001 (2011).
[39] M. Alatalo, M.J. Puska, R.M. Nieminen, “First-principles study of He in Si,” Physical Review B 46(19), 12806 (1992).
[40] F. Corni, G. Calzolari, F. Gambetta, C. Nobili, R. Tonini, M. Zapparoli, “Evolution of vacancy-like defects in helium-implanted (100) silicon studied by thermal desorption spectrometry,” Materials Science and Engineering: B 71(1-3), 207-212 (2000).
[41] B. Nielsen, O. Holland, T. Leung, K. Lynn, “Defects in Mev Si‐implanted Si probed with positrons,” Journal of applied physics 74(3), 1636-1639 (1993).
[42] M. Fujinami, A. Tsuge, K. Tanaka, “Characterization of defects in self‐ion implanted si using positron annihilation spectroscopy and rutherford backscattering spectroscopy,” Journal of applied physics 79(12), 9017-9021 (1996).
[43] P. Simpson, M. Vos, I. Mitchell, C. Wu, P. Schultz, “Ion-beam-induced damage in silicon studied using variable energy positrons, rutherford backscattering, and infrared absorption,” Physical Review B 44(22), 12180 (1991).
[44] S. Frabboni, F. Corni, C. Nobili, R. Tonini, G. Ottaviani, “Nanovoid formation in helium-implanted single-crystal silicon studied by in situ techniques,” Physical Review B 69(16), 165209 (2004).
[45] S. Myers, D. Follstaedt, “Forces between cavities and dislocations and their influence on semiconductor microstructures,” Journal of applied physics 86(6), 3048-3063 (1999).
[46] E.R. Weber, “Transition metals in silicon,” Applied Physics A 30(1), 1-22 (1983).
[47] B.O. Kolbesen, “Proceedings of the symposium on crystalline defects and contamination, their impact and control in device manufacturing,” Electrochemical Society (1997).
[48] A.A. Istratov, C. Flink, H. Hieslmair, E.R. Weber, T. Heiser, “Intrinsic diffusion coefficient of interstitial copper in silicon,” Physical review letters 81(6), 1243 (1998).
[49] J.W. Leung, D. Eaglesham, J. Sapjeta, D. Jacobson, J. Poate, J. Williams, “The precipitation of fe at the Si–SiO2 interface,” Journal of applied physics 83(1), 580-584 (1998).
[50] V. Raineri, G. Fallica, S. Libertino, “Lifetime control in silicon devices by voids induced by he ion implantation,” Journal of applied physics 79(12), 9012-9016 (1996).
[51] R. Hull, “Properties of crystalline silicon,” IET 20, (1999).
[52] M. Seibt, H. Hedemann, A. Istratov, F. Riedel, A. Sattler, W. Schröter, “Structural and electrical properties of metal silicide precipitates in silicon,” physica status solidi (a) 171(1), 301-310 (1999).
[53] H. Shimizu, Y. Sugino, N. Suzuki, Y. Matsuda, S. Kiyota, K. Nagasawa, M. Fujita, “A new concept of p/sup-/(n/sup-/)/p/sup-/(n/sup-/) thin-film epitaxial silicon wafers for mos ulsi's that ensures excellent gate oxide integrity,” IEEE transactions on semiconductor manufacturing 11(2), 239-245 (1998).
[54] S. Myers, G. Petersen, T. Headley, J. Michael, T. Aselage, C. Seager, “Metal gettering by boron-silicide precipitates in boron-implanted silicon,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 127, 291-296 (1997).
[55] W. Deweerd, G. Koops, H. Pattyn, S. Myers, T. Aselage, T. Headley, G. Petersen, “Mössbauer study of the proximity gettering of ion-implanted 57Co impurities by B-Si precipitates in Si,” EPL (Europhysics Letters) 44(6), 707 (1998).
[56] S. Myers, G. Petersen, C. Seager, “Binding of cobalt and iron to cavities in silicon,” Journal of applied physics 80(7), 3717-3726 (1996).
[57] G. Petersen, S. Myers, D. Follstaedt, “Gettering of transition metals by cavities in silicon formed by helium ion implantation,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 127, 301-306 (1997).
[58] J. Grisolia, A. Claverie, G.B. Assayag, S. Godey, E. Ntsoenzok, F. Labhom, A.V. Veen, “Growth mechanism of cavities in Mev helium implanted silicon,” Journal of applied physics 91(11), 9027-9030 (2002)
[59] T.Y. Tan, “Atomic modelling of homogeneous nucleation of dislocations from condensation of point defects in silicon,” Philosophical Magazine A 44(1), 101-125 (1981).
[60] T.S. Matthews, C. Sawyer, D.F. Ogletree, Z.L.Weber, D.C. Chrzan, J. Wu, “Large reaction rate enhancement in formation of ultrathin ausi eutectic layers,” Physical review letters 108(9), 096102 (2012).
[61] P.B. Hirsch, A. Howie, R.B. Nichol, D.W. Pashley, M.J. Whelan, “Electron microscopy of thin crystals,” Butterworths, London. (1965).
[63] F. Schiettekatte, C. Wintgens, S. Roorda, “Influence of curvature on impurity gettering by nanocavities in Si,” Applied physics letters 74(13), 1857-1859 (1999).
|