帳號:guest(3.139.67.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉宏祥
作者(外文):Liu, Hung-Hsiang
論文名稱(中文):鍍層架構對鍍覆於AISI D2鋼之氮化鈦鋯鍍層磨潤性之影響
論文名稱(外文):Effect of Coating Architecture on Tribological Behavior of TiZrN Coatings on AISI D2 Steel
指導教授(中文):黃嘉宏
指導教授(外文):Huang, Jia-Hong
口試委員(中文):李志偉
張銀祐
口試委員(外文):Lee, Jyh-Wei
Chang, Yin-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011507
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:85
中文關鍵詞:氮化鈦鋯介層過渡層殘留應力磨潤性
外文關鍵詞:TiZrNinterlayertransitional layerresidual stresstribological
相關次數:
  • 推薦推薦:0
  • 點閱點閱:485
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目的為探討鈦介層和氮化鈦過渡層在雙層和三層氮化鈦鋯鍍層中對於應力釋放以及磨潤性質扮演的角色。此外,也會探討鈦介層和鈦鋯介層對於鍍層應力釋放的影響。試片以非平衡磁控濺鍍法在AISI D2鋼上鍍製氮化鈦鋯鍍層。本實驗設計的鍍層架構有六種,單層氮化鈦鋯、雙層氮化鈦鋯/鈦、氮化鈦鋯/氮化鈦、三層氮化鈦鋯/氮化鈦/鈦、氮化鈦鋯/氮化鈦/鈦鋯以及四層氮化鈦鋯/氮化鈦/鈦鋯/鈦。其中三層氮化鈦鋯鍍層中的氮化鈦厚度從200到400奈米。上層氮化鈦鋯鍍層的厚度控制在1600奈米左右。如此一來,可以去除鍍層厚度對於殘留應力以及耐磨性的影響。上層氮化鈦鋯的殘留應力由平均X光應變法結合奈米壓痕法測得。應力數值分布範圍從-5.87 到-3.74 GPa。透過比較雙層和三層鍍層中氮化鈦鋯殘留應力可以發現單獨加入鈦介層應力釋放的效果是比較好的。氮化鈦過渡層的加入反而會減少氮化鈦鋯殘留應力釋放量。四層氮化鈦鋯鍍層的殘留應力是所有試片中最低的,這結果代表以漸層的方式設計金屬介層可以有效地降低應力。從刮痕測試的結果發現加入介層或過渡層可以大幅改善鍍層與基板的附著力。從75公尺的磨耗測試結果發現磨耗率同時受到摩擦係數和磨耗機制影響。另外,在150公尺的磨耗測試結果發現磨耗率最好的兩個試片是單層氮化鈦鋯和雙層氮化鈦鋯/鈦,代表加入介層或過渡層對於耐磨性的改善有限。剛剛提到利用改變介層架構可以有效地降低殘留應力,但是殘留應力下降時,耐磨性卻沒有明顯改善。此外,常見的指標像是硬度對彈性常數的比值和彈性儲存能在本研究中並不適合評估耐磨性,可能是因為隨著鍍層架構改變,上層的破裂韌性(Gc)也會跟著改變。
The objectives of this study were to investigate the roles of Ti interlayer and TiN transitional layer in stress relief and tribological behavior of bi-layer and tri-layer TiZrN coatings. In addition, the effect of Ti and TiZr interlayers on stress relief in tri-layer and quadri-layer coatings was explored. TiZrN coatings with different architectures were deposited on AISI D2 steel by DC unbalanced magnetron sputtering. There were six designed architectures, including TiZrN (S), TiZrN/Ti (Bm), TiZrN/TiN (Bc), TiZrN/TiN/Ti (Tx), TiZrN/TiN/TiZr (Tz), and TiZrN/TiN/TiZr/Ti (Q), where x represented the TiN thickness ranging from 200 to 400 nm. The thickness of TiZrN coatings for all specimens was fixed at 1600 ± 70 nm such that the effect of coating thickness on the residual stress and wear behavior could be ruled out. Residual stress of the TiZrN coatings measured by average X-ray strain combined with nanoindentation method ranged from -5.87 to -3.74 GPa. The extent of stress relief by TiN/Ti layer in Tx series is smaller than that by Ti interlayer in specimen Bm. The results indicated that introducing a TiN transitional layer decreased the capability of stress relief on TiZrN layer. Moreover, the residual stress of specimen Q was the lowest among all specimens, suggesting that adding graded interlayers is an effective approach in relieving stress of the hard coating. The adhesion strength was measured by scratch tests, and the wear rate was evaluated by pin-on-disc tests. Critical loads (Lc2) of all specimens ranged from 52.6 to 81.0 N. The results showed that adding interlayer or transitional layer could significantly improve the adhesion strength. The wear rate of TiZrN coatings at 75-m sliding distance is correlated to both friction coefficient and wear mechanism. In the wear test at 150-m sliding distance, the specimens S and Bm showed lower wear rate than other specimens, which indicated that the wear resistance could not be significantly improved by introducing interlayer or transitional layer. As mentioned above, the residual stress of TiZrN layer could be substantially relieved by introducing Ti interlayer or TiZr/Ti graded interlayer, but the wear resistance did not increase. Moreover, the H/E ratio, H3/E2 ratio, and stored elastic energy (Gs) of TiZrN layer could not be used as indexes to evaluate the wear resistance, possibly due to the variation of fracture toughness of TiZrN coatings in different coating architectures.
致謝..........................................................i
摘要........................................................iii
Abstract.....................................................iv
Contents.....................................................vi
List of Figures............................................viii
List of Tables...............................................ix
Chapter 1 Introduction........................................1
Chapter 2 Literature Review...................................3
2.1 Characteristics of Transition Metal Nitride Coatings......3
2.2 Characteristics of TiZrN coatings.........................5
2.2.1 Structure of TiZrN coatings.............................5
2.2.2 Properties of TiZrN coatings............................5
2.3 Effect of Metal Interlayer................................6
2.4 Effect of Functionally Graded Materials (FGM).............7
2.5 Tribological Behavior.....................................9
2.5.1 Adhesion Strength.......................................9
2.5.2 Wear resistance........................................10
2.5.3 Evaluation of Wear Resistance..........................11
Chapter 3 Experimental Details...............................13
3.1 Substrate Preparation....................................13
3.2 Deposition Procedures....................................13
3.3 Characterization Methods for Compositions and Structure..17
3.3.1 Electron Probe Microanalysis (EPMA)....................17
3.3.2 Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS)........................................................17
3.3.3 X-Ray Diffraction (XRD) and Glancing Incidence XRD (GIXRD)......................................................17
3.3.4 Atomic Force Microscope (AFM)..........................18
3.3.5 Field-Emission Scanning Electron Microscope (FE-SEM)...19
3.4 Characterization Methods for Mechanical Properties.......19
3.4.1 Hardness and Young’s modulus...........................19
3.4.2 Micro-Vickers hardness test............................20
3.4.3 Residual stress: Average X-ray strain (AXS) method.....21
3.4.4 Scratch test...........................................21
3.4.5 Pin-on-disk Wear Test..................................23
Chapter 4 Results............................................25
4.1 Chemical Compositions and Structure......................28
4.1.1 Chemical Compositions..................................28
4.1.2 Crystal Structure......................................30
4.1.3 Microstructure.........................................33
4.1.4 Surface Roughness......................................35
4.2 Properties...............................................38
4.2.1 Hardness and Young’s modulus...........................38
4.2.2 Microhardness..........................................38
4.2.3 Residual Stress........................................39
4.2.4 Adhesion Strength......................................41
4.2.5 Wear Resistance........................................45
Chapter 5 Discussion.........................................55
5.1 Residual stress..........................................55
5.1.1 Roles of Ti interlayer and TiN transitional layer in bi-layer and tri-layer TiZrN coatings...........................55
5.1.2 Effect of Ti and TiZr interlayers on stress relief.....56
5.2 Adhesion strength........................................58
5.3 Wear resistance..........................................58
5.3.1 Wear mechanism.........................................58
5.3.2 Friction coefficient...................................59
5.3.3 Wear rate of TiZrN coatings............................60
5.3.4 Wear rate of the entire coatings.......................65
Chapter 6 Conclusions........................................67
Reference....................................................68
Appendix A Friction coefficient (75 m).......................76
Appendix B SEM images of wear track (150 m)..................77
Appendix C EDS-mapping of wear track.........................80

[1] Y.-W. Lin, P.-C. Chih, J.-H. Huang, Effect of Ti interlayer thickness on mechanical properties and wear resistance of TiZrN coatings on AISI D2 steel, Surf. Coat. Technol. 394 (2020) 125690.
[2] Y.-C. Hung, Effect of Metallic Graded Layers on Tribological Behavior of TiZrN Coatings on AISI D2 Steel, National Tsing Hua University, Master Thesis (2019).
[3] B.-S. Tsai, Effect of Functionally Graded Layers on Tribological Behavior of TiZrN Coatings on AISI D2 Steel, National Tsing Hua University, Master Thesis (2019).
[4] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol. 191 (2005) 17-24.
[5] Z.B. Qi, P. Sun, F.P. Zhu, Z.C. Wang, D.L. Peng, C.H. Wu, The inverse Hall-Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol. 205 (2011) 3692-3697.
[6] L.E. Toth, Transition Metal Carbides and Nitrides, Refractory Materials 1971.
[7] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Material properties of ZrN film on silicon prepared by low-energy ion-assisted deposition, Surf. Coat. Technol. 66 (1994) 318-323.
[8] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Technol. 41 (1990) 191-204.
[9] L.V. Leaven, M.N. Alias, R. Brown, Corrosion behavior of ion plated and implanted films, Surf. Coat. Technol. 53 (1992) 25-34.
[10] D. Jianxin, L. Jianhua, Z. Jinlong, S. Wenlong, N. Ming, Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes, Wear 264 (2008) 298-307.
[11] P.J. Kelly, T.V. Braucke, Z. Liu, R.D. Arnell, E.D. Doyle, Pulsed DC titanium nitride coatings for improved tribological performance and tool life, Surf. Coat. Technol. 202 (2007) 774-780.
[12] L. Hultman, Thermal stability of nitride thin films, Vacuum 57 (2000) 1.
[13] T.G. Dziura, B. Bunday, C. Smith, M.M. Hussain, R. Harris, X. Zhang, J.M. Price, Measurement of high-k and metal film thickness on FinFET sidewalls using scatterometry, Proc. of SPIE 6922 (2008) 69220V-1.
[14] N. Pessall, R.E. Gold, H.A. Johansen, A study of superconductivity in interstitial compounds, J. Phys. Chem. Solids 29 (1968) 19-38.
[15] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si (100), Thin Solid Films 405 (2002) 162-169.
[16] H.A. Wriedt, J.L. Murray, The N-Ti (Nitrogen-Titanium) System, Bulletin of Alloy Phase Diagrams 8 (1987) 378-388.
[17] H. Okamoto, N-Zr (Nitrogen-Zirconium), J. Phase Equilib. Diffus. 27 (2006) 551.
[18] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy, J. Appl. Phys. 72 (1992) 1805.
[19] E. Török, A.J. Perry, L. Chollet, W.D. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films 153 (1987) 37-43.
[20] K. Chen, L.R. Zhao, J. Rodgers, J.S. Tse, Alloying effects on elastic properties of TiN-based nitrides, J. Phys. D: Appl. Phys. 36 (2003) 2725-2729.
[21] A.J. Perry, A contribution to the study of poisson's ratios and elastic constants of TiN, ZrN and HfN, Thin Solid Films 193/194 (1990) 463-471.
[22] D. Maheo, J.-M. Poitevin, Microstructure and electrical resistivity of TiN films deposited on heated and negatively biased silicon substrates, Thin Solid Films 237 (1994) 78-86.
[23] O. Knotek, M. Böhmer, T. Leyendecker, F. Jungblut, The structure and composition of Ti-Zr-N, Ti-Al-Zr-N and Ti-Al-V-N coatings, Mater. Sci. Eng. A 105/106 (1988) 481-488.
[24] J.-H. Huang, Y.-F. Chen, G.-P. Yu, Evaluation of the fracture toughness of Ti1-xZrxN hard coatings: Effect of compositions, Surf. Coat. Technol. 358 (2019) 487-496.
[25] G. Abadias, V.I. Ivashchenko, L. Belliard, Ph. Djemia, Structure, phase stability and elastic properties in the Ti1–xZrxN thin-film system: Experimental and computational studies, Acta Mater. 60 (2012) 5601-5614.
[26] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films 518 (2010) 7308-7311.
[27] Y.-W. Lin, H.-A. Chen, G.-P. Yu, J.-H. Huang, Effect of bias on the structure and properties of TiZrN thin films deposited by unbalanced magnetron sputtering, Thin Solid Films 618 (2016) 13-20.
[28] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate, J. Vac. Sci. Technol. A 28 (2010) 774
[29] Y.-W. Lin, J.-H. Huang, W.-J. Cheng, G.-P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol. 350 (2018) 745-754.
[30] L.A. Donohue, J. Cawley, J.S. Brooks, Deposition and characterisation of arc-bond sputter TixZryN coatings from pure metallic and segmented targets, Surf. Coat. Technol. 72 (1995) 128-138.
[31] W.-L. Pan, G.-P. Yu, J.-H. Huang, Mechanical properties of ion-plated TiN films on AISI D2 steel, Surf. Coat. Technol. 110 (1998) 111-119.
[32] T. Sugahara, G.V. Martins, F.E. Montoro, A.M. Neto, M. Massi, A.S.D.S. Sobrinho, D.A.P. Reis, Creep behavior evaluation and characterization of SiC film with Cr interlayer deposited by HiPIMS in Ti-6Al-4V alloy, Surf. Coat. Technol. 309 (2017) 410-416.
[33] S. Han, H.-Y. Chen, Z.-C. Chang, J.-H. Lin, C.-J. Yang, F.-H. Lu, F.-S. Shieu, H.C. Shih, Effect of metal vapor vacuum arc Cr-implanted interlayers on the microstructure of CrN film on silicon, Thin Solid Films 436 (2003) 238-243.
[34] G.S. Kim, S.Y. Lee, J.H. Hahn, B.Y. Lee, J.G. Han, J.H. Lee, S.Y. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coat. Technol. 171 (2003) 83-90.
[35] J.B. Niu, Y. Wang, Z.W. Yang, D.P. Wang, Microstructure and Mechanical Properties of Titanium–Zirconium–Molybdenum and Ti2AlNb Joint Diffusion Bonded with and without a Ni Interlayer, Adv. Eng. Mater. 21 (2019) 1900713.
[36] F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel, Thin Solid Films 311 (1997) 138-145.
[37] S.J. Bull, P.R. Chalker, C.F. Ayres, D.S. Rickerby, The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition, Mater. Sci. Eng. A 139 (1991) 71-78.
[38] D.S. Rickerby, S.J. Bull, T. Robertson, A. Hendry, The role of titanium in the abrasive wear resistance of physically vapour-deposited TiN, Surf. Coat. Technol. 41 (1990) 63-74.
[39] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films, Surf. Coat. Technol. 200 (2006) 5937-5945.
[40] J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Technol. 201 (2007) 7043-7053.
[41] K.-S. Kim, H.-K. Kim, J.-H. La, S.-Y. Lee, Effects of interlayer thickness and the substrate material on the adhesion properties of CrZrN coatings, Jpn. J. Appl. Phys. 55 (2016) 01AA02.
[42] F. Erdogan, Fracture mechanics of functionally graded materials, Compos. Eng. 5 (1995) 753-770.
[43] S. Suresh, Graded materials for resistance to contact deformation and damage, Sci. 292 (2001) 2447-2451.
[44] Y.Z. Cao, Z.W. Xie, X.H. An, Y.B. Wang, Q. Chen, Y.D. Yan, F.L. Yu, X.Z. Liao, Fracture mechanism of an Al/AlN/CrAlN gradient coating on nitrogen implanted magnesium alloy, Surf. Coat. Technol. 302 (2016) 126-130.
[45] Y.-Y. Chang, Y.-J. Yang, S.-Y. Weng, Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings, Surf. Coat. Technol. 389 (2020) 125637.
[46] J. Lin, B. Mishra, S. Myers, P. Ried, J.J. Moore, The development of a nanostructured, graded multilayer Cr-CrxNy-Cr1−xAlxN coating produced by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) for use in aluminum pressure die casting dies, J. Nanosci. 9 (2009) 3514-3523.
[47] M.S. Kabir, P. Munroe, Z. Zhou, Z. Xie, Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering, Wear 380-381 (2017) 163-175.
[48] N.E. Beliardouh, K. Bouzid, C. Nouveau, B. Tlili, M.J. Walock, Tribological and electrochemical performances of Cr/CrN and Cr/CrN/CrAlN multilayer coatings deposited by RF magnetron sputtering, Tribol. 82 (2015) 443-452.
[49] M. Abedi, A. Abdollah-zadah, A. Vicenzo, M. Bestetti, Farid. Movassagh-Alanagh, E. Damerchi, A comparative study of the mechanical and tribological properties of PECVD single layer and compositionally graded TiSiCN coatings, Ceramics International 45 (2019) 21200-21207.
[50] G. Skordaris, K.D. Bouzakis, T. Kotsanis, P. Charalampous, E. Bouzakis, B. Breidenstein, B. Bergmann, B. Denkena, Effect of PVD film's residual stresses on their mechanical properties, brittleness, adhesion and cutting performance of coated tools, CIRP J. Manuf. Sci. Technol. 18 (2017) 145-151.
[51] M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test, Thin Solid Films 117 (1984) 243-249.
[52] P.A. Steinmann, Y. Tardy, H.E. Hintermann, Adhesion testing by the scratch test method: the influence of intrinsic and extrinsic parameters on the critical load, Thin Solid Films 154 (1987) 333-349.
[53] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit, Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests, Thin Solid Films 270 (1995) 431-438.
[54] J. Takadoum, H.H. Bennani, Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films, Surf. Coat. Technol. 96 (1997) 272-282.
[55] C.A. Carrasco, V. Vergara, R. Benavente, N. Mingolo, J.C. Rı́os, The relationship between residual stress and process parameters in TiN coatings on copper alloy substrates, Mater. Charact. 48 (2002) 81-88.
[56] C.-I. Chiu, Effect of processing parameter on wear resistance and mechanical properties of thick TiN coatings on D2 steel deposited by unbalanced magnetron sputtering, National Tsing Hua University, Master Thesis (2014).
[57] L.C. Agudelo-Morimitsu, J.D.L. Roche, A. Ruden, D. Escobar, E. Restrepo-Parra, Effect of substrate temperature on the mechanical and tribological properties of W/WC produced by DC magnetron sputtering, Ceramics International 40 (2014) 7037–7042.
[58] T. Banerjee, A.K. Chattopadhyay, Effects of hard TiN under layer on mechanical properties and wear characteristics of TiN-WSx composite coating, Mater. Res. Express 6 (2019) 116417.
[59] T. Polcar, N.M.G. Parreira, R. Novák, Friction and wear behaviour of CrN coating at temperatures up to 500 °C, Surf. Coat. Technol. 201 (2007) 5228-5235.
[60] Z.P. Huang, Y. Sun, T. Bell, Friction behaviour of TiN, CrN and (TiAl) N coatings, Wear 173 (1994) 13-20.
[61] S. Wilson, A.T. Alpas, Wear mechanism maps for TiN-coated high speed steel, Surf. Coat. Technol. 120-121 (1999) 519-527.
[62] S. Wilson, A.T. Alpas, TiN coating wear mechanisms in dry sliding contact against high speed steel, Surf. Coat. Technol. 108-109 (1998) 369-376.
[63] S. Wilson, A.T. Alpas, Effect of temperature and sliding velocity on TiN coating wear, Surf. Coat. Technol. 94-95 (1997) 53-59.
[64] P.C. Okonkwo, G. Kelly, B.F. Rolfe, M.P. Pereira, The effect of sliding speed on the wear of steel–tool steel pairs, Tribology International 97 (2016) 218-227.
[65] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246 (2000) 1-11.
[66] T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, R.L. White, S. Anders, A. Anders, I.G. Brown, Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, Mat. Res. Soc. Symp. Proc. 383 (1995) 447-452.
[67] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol. 239 (2014) 20-27.
[68] P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr, 2 (1918) 98-100.
[69] R.Y. Lo, D.B. Bogy, Compensating for elastic deformation of the indenter in hardness tests of very hard materials, J. Mater. Res. 14 (1999) 2276-2282.
[70] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
[71] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Am. Ceram. Soc. 64 (1981) 533–538.
[72] A.-N. Wang, C.-P. Chuang, G.-P. Yu, J.-H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Technol. 262 (2015) 40-47.
[73] B.B. He, Two-Dimensional X-Ray Diffraction, John Wiley & Sons, Inc. (2009) 249-328.
[74] S. Ma, J. Prochazka, P. Karvankova, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Vepřek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN, Surf. Coat. Technol. 194 (2005) 143-148.
[75] J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, Microstructure, mechanical and tribological properties of Cr1−xAlxN films deposited by pulsed-closed field unbalanced magnetron sputtering (P-CFUBMS), Surf. Coat. Technol. 201 (2006) 4329-4334.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *