帳號:guest(3.147.66.128)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉惟鈞
作者(外文):Liu, Matthew Wei-Jun
論文名稱(中文):鍍層架構對鍍覆於矽基板之氮化鈦鋯鍍層殘留應力釋放機制之影響
論文名稱(外文):Effect of Coating Architecture on Stress Relief Mechanism of TiZrN Coating on Silicon Substrate
指導教授(中文):黃嘉宏
指導教授(外文):Huang, Jia-Hong
口試委員(中文):呂福興
林明澤
口試委員(外文):Lu, Fu-Hsing
Lin, Ming-Tzer
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011506
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:73
中文關鍵詞:氮化鈦鋯介層鍍層架構殘留應力
外文關鍵詞:TiZrNinterlayercoating architectureresidual stress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:131
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
以物理氣相沉積鍍製之薄膜往往會產生殘留應力。降低殘留應力的方式包含在基板與硬膜之間加入金屬介層,或者製造梯度性漸層與建構性介層。然而,利用建構性介層的殘留應力釋放機制仍未知。本研究之目的為提出一個物理模式以解釋導致上層硬膜應力釋放之能量釋放機制。鍍覆於矽基板之氮化鈦鋯/氮化鈦/鈦為本研究的模式材料。雷射曲率法與平均X光應變法(AXS)分別為量測薄膜整體應力與各層薄膜應力之方法。實驗結果顯示使用鈦/氮化鈦時,上層氮化鈦鋯之應力比使用單層鈦介層時還低。最低的氮化鈦鋯之應力為氮化鈦300奈米厚之三層試片T3,其值為-2.18 GPa。三層系列試片中,氮化鈦的應力隨著其厚度呈現線性上升。在我們提出的物理模式中,我們假設上層硬膜減少的彈性能與基板減少的彈性能皆轉換為鈦介層的塑性功。模式中也提出一個計算氮化鈦鋯/氮化鈦複合薄膜彈性能之方法。本研究發現氮化鈦的角色為能量通道,能夠將氮化鈦鋯的能量有效的傳遞至鈦介層。因此,氮化鈦鋯/氮化鈦/鈦三層試片中的能量釋放效率遠高於氮化鈦鋯/鈦雙層式片。另外,氮化鈦過渡層的加入使得主要能量釋放比例反轉。三層試片中的主要能量釋放比例在上層硬膜中,而雙層試片中的主要能量釋放比例則在基板中。
Residual stress is usually generated in hard coatings deposited by physical vapor deposition. Residual stress can be alleviated by introducing a metal interlayer between coating and substrate or by creating functionally graded coating and coating architecture. However, the underlying stress relief mechanism of architected coatings has not been fully explored. This study aims to establish an energy-based physical model to explain the energy relief mechanism in architected coatings that results in stress relief of the hard coating. TiZrN/TiN/Ti tri-layer coating on Si substrate was chosen as the model system. Laser curvature method and the average X-ray strain method combined with nanoindentation were used to measure the residual stress of the entire coating and individual layers, respectively. Experimental results showed that the stress in TiZrN coating was further reduced by introducing a Ti/TiN architected interlayer as compared with adding a Ti interlayer. The tri-layer specimen with TiN thickness of 300 nm showed the largest stress relief among all specimens, where the TiZrN coating had the lowest stress, -2.18 GPa. The stress of TiN transitional layer in the tri-layer specimens linearly increased with TiN thickness. Our physical model postulated that the relief of stored elastic energy in the top coating and in the Si substrate were both converted into the plastic work of Ti interlayer. A methodology for calculating stored energy in TiZrN/TiN composite coating was proposed. The TiN transitional layer served as an energy channel that effectively transferred the stored energy in TiZrN to the Ti interlayer. Therefore, the efficiency of energy relief in TiZrN/TiN/Ti tri-layer coating was significantly higher than that of TiZrN/Ti bilayer coating. Furthermore, the addition of TiN transitional layer reversed the major fraction of energy relief from the substrate to the top coating.
致謝 i
摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Characteristics of Transition Metal Nitrides 3
2.2 Characteristics of TiZrN Coatings 6
2.2.1 Structure 6
2.2.2 Properties 8
2.3 Residual Stress in Thin Films 8
2.4 Measurement of Residual Stress in Thin Films 9
2.4.1 Laser Curvature Method (LCM) 9
2.4.2 Grazing Incidence X-ray cos2αsin2ψ Method 10
2.4.3 Average X-ray Strain (AXS) Method 13
2.5 Stress Relief in Hard Coatings by Metal Interlayer 15
2.6 Functionally Graded and Architected Coatings 16
Chapter 3 Theoretical Basis 19
3.1 Stored Elastic Energy of Hard Coatings 19
3.2 Plastic Work of Ti 20
3.3 Energy Conservation 20
3.4 Stored Elastic Energy in a Composite Coating 21
Chapter 4 Experimental Procedures 24
4.1 Sample Preparation and Film Deposition 24
4.2 Characterization of Compositions and Structure 28
4.2.1 Electron Probe Microanalysis (EPMA) 28
4.2.2 X-Ray Diffraction (XRD) and Grazing Incidence X-Ray Diffraction (GIXRD) 28
4.2.3 Field Emission Gun Scanning Electron Microscope (FEG-SEM) 29
4.2.4 Atomic Force Microscope (AFM) 29
4.3 Characterization of Mechanical Properties 30
4.3.1 Hardness and Young’s Modulus: Nanoindentation 30
4.3.2 Residual Stress: Laser Curvature and Average X-Ray Strain Methods 30
4.3.2.1 Laser Curvature Method (LCM) 30
4.3.2.2 Average X-Ray Strain (AXS) 33
Chapter 5 Results 34
5.1 Chemical Compositions and Structure 37
5.1.1 Chemical Compositions 37
5.1.2 Crystal Structure 37
5.1.3 Microstructure 40
5.1.4 Surface Roughness 42
5.2 Mechanical Properties 44
5.2.1 Hardness and Young’s Modulus 44
5.2.2 Residual Stress 44
Chapter 6 Discussion 48
6.1 The Difference of Measured Residual Stress: LCM vs XRD 48
6.2 Effect of TiN Sublayer on Residual Stress of TiZrN/TiN Bilayer Specimen 49
6.3 The Efficiency of Energy Relief by Ti Interlayer 51
6.3.1 Stored Elastic Energy and Energy Relief in the Bilayer TiZrN/Ti Coating 51
6.3.2 Stored Elastic Energy and Energy Relief in the Tri-layer TiZrN/TiN/Ti Coatings 51
6.3.3 The Maximum Plastic Work of Ti and Efficiency of Energy Relief 52
6.4 The Extent of Stress and Energy Relief by Ti/TiN Architected Interlayer 55
Chapter 7 Conclusions 58
References 59
Appendix A 2D AFM Images 67
Appendix B High-γ GIXRD Plots 68
Appendix C AXS Linear Regression Fitting 71

[1] M. Wittmer, High‐temperature contact structures for silicon semiconductor devices, Appl. Phys. Lett. 37 (1980) 540-542.
[2] C. Ting, TiN formed by evaporation as a diffusion barrier between Al and Si, J. Vac. Sci. Technol. 21 (1) (1982) 14-18.
[3] U. Beck, G. Reiners, I. Urban, H. A. Jehn, U. Kopacz, H. Schack, Decorative hard coatings: new layer systems without allergy risk, Surf. Coat. Technol. 61 (1993) 215-222.
[4] V. A. Mernagh, T. C. Kelly, M. Ahern, A. D. Kennedy, A. P. M. Adriaansen, P. P. J. Ramaekers, L. McDonnell, R. Koekoek, Adhesion improvements in silicon carbide deposited by plasma enhanced chemical vapour deposition, Surf. Coat. Technol. 49 (1991) 462-467.
[5] A. J. V. Vuuren, V.A. Skuratov, V.V. Uglov, J.H. Neethling, S.V. Zlotski, Radiation tolerance of nanostructured ZrN coatings against swift heavy ion irradiation, J. Nucl. Mater. 442 (2013), 507-511.
[6] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol. 191 (2005) 17-24.
[7] Z.-B. Qi, P. Sun, F.-P. Zhu, Z.-C. Wang, D.-L. Peng, C.-H. Wu, The inverse Hall–Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol. 205 (2011) 3692-3697.
[8] D. Jianxin, L. Jianhua, Z. Jinlong, S. Wenlong, N. Ming, Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes, Wear 264 (2008) 298-307.
[9] L.E. Toth, Transition Metal Carbides and Nitrides, Refractory Materials 1971.
[10] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Material properties of ZrN film on silicon prepared by low-energy ion-assisted deposition, Surf. Coat. Technol. 66 (1994) 318-322.
[11] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Technol. 41 (1990) 191-204.
[12] L. V. Leaven, M.N. Alias, R. Brown, Corrosion behavior of ion plated and implated films, Surf. Coat. Technol. 53 (1992) 25-34.
[13] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surf. Coat. Technol. 112 (1999) 108-113.
[14] J.-H. Huang, Y.-F. Chen, G.-P. Yu, Evaluation of the fracture toughness of Ti1-xZrxN hard coatings: Effect of compositions, Surf. Coat. Technol. 358 (2019) 487-496.
[15] H.-M. Tung, P.-H. Wu, G.-P. Yu, J.-H. Huang, Microstructures, mechanical properties and oxidation behavior of vacuum annealed TiZrN thin films, Vac. 115 (2015) 12-18.
[16] G. Abadias, L.E. Koutsokeras, Ph. Guerin, P. Patsalas, Stress evolution in magnetron sputtered Ti–Zr–N and Ti–Ta–N films studied by in situ wafer curvature: Role of energetic particles, Thin Solid Films 518 (2009) 1532-1537.
[17] G. Abadias, Ph. Guerin, In situ stress evolution during magnetron sputtering of transition metal nitride thin films, Appl. Phys. Lett. 93 (2008) 111908.
[18] Y.-W. Lin, J.-H. Huang, W.-J. Cheng, G.-P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol. 350 (2018) 745-754.
[19] Y.-W. Lin, P.-C. Chih, J.-H. Huang, Effect of Ti interlayer thickness on mechanical properties and wear resistance of TiZrN coatings on AISI D2 steel, Surf. Coat. Technol. 394 (2020) 125-690.
[20] X. Zeng, S. Zhang, J. Hsieh, Development of graded Cr–Ti–N coatings, Surf. Coat. Technol. 102 (1998) 108-112.
[21] X.C. Zhang, B.S. Xu, H.D. Wang, Y. Jiang, Y.X. Wu, Application of functionally graded interlayer on reducing the residual stress discontinuities at interfaces within a plasma-sprayed thermal barrier coating, Surf. Coat. Technol. 201 (2007) 5716-5719.
[22] J. Zalesak, M. Bartosik, R. Daniel, C. Mitterer, C. Krywka, D. Kiener, P.H. Mayrhofer, J. Keckes, Cross-sectional structure-property relationship in a graded nanocrystalline Ti1−xAlxN thin film, Acta Mater. 102 (2016) 212-219.
[23] B.-S. Tsai, Effect of Functionally Graded Layers on Tribological Behavior of TiZrN Coatings on AISI D2 Steel, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, 2019.
[24] S. Peng, J. Xu, P. Munroe, Z. Xie, Sandwich-structured, damage-resistant TiN/graded TiSiN/TiSiN film, Results Phys. 12 (2019) 543-554.
[25] Y.-Y. Chang, Y.-J. Yang and S.-Y. Weng, Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings, Surf. Coat. Technol. 389 (2020) 125637.
[26] Y.-C. Hung, Effect of Metallic Graded Layers on Tribological Behavior of TiZrN Coatings on AISI D2 Steel, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, 2019.
[27] N. Pessall, R.E. Gold, H.A. Johansen, A study of supercouductivity in interstitial compounds, J. Phys. Chem. Solids. 29 (1968) 19-38.
[28] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si (100), Thin Solid Films 405 (2002) 162-169.
[29] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy, J. Appl. Phys. 72 (1992) 1805-1811.
[30] E. Török, A. Perry, L. Chollet, W. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films 153 (1987) 37-43.
[31] K. Chen, L. Zhao, J. Rodgers, S.T. John, Alloying effects on elastic properties of TiN-based nitrides, J. Phys. D: Appl. Phys. 36 (2003) 2725-2729.
[32] A.J. Perry, A contribution to the study of Poisson's ratios and elastic constants of TiN, ZrN and HfN, Thin Solid Films 193-194 (1990) 463-471.
[33] H. A. Wriedt, J.L. Murray, The N-Ti (Nitrogen-Titanium) System, Bulletin of Alloy Phase Diagrams 8 (1987).
[34] H. Okamoto, N-Zr (Nitrogen-Zirconium), J. Phase Equilib. Diffus. 27 (2006) 551-551.
[35] D. Maheo, J.M. Poitevin, Microstructure and electrical resistivity of TiN films deposited on heated and negatively biased silicon substrates, Thin Solid Films 237 (1994) 78-86.
[36] C. C. Wang, S. A. Akbar, W. Chen, V. D. Patton, Electrical properties of high-temperature oxides, borides, carbides, and nitrides, J. Mater. Sci. 30 (1995) 1627-1641.
[37] L. Chen, J. Paulitsch, Y. Du, P. H. Mayrhofer, Thermal stability and oxidation resistance of Ti–Al–N coatings, Surf. Coat. Technol. 206 (2012) 2954–2960.
[38] K. Kutscheja, P. H. Mayrhoferb, M. Kathreinc, P. Polcikd, R. Tessadrie, C. Mitterer, Structure, mechanical and tribological properties of sputtered Ti1–xAlxN coatings with 0.5≤x≤0.75, Surf. Coat. Technol. 200 (2005) 2358–2365.
[39] P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, C. Mitterer, L. Hultman, Self-organized nanostructures in the Ti–Al–N system, Appl. Phys. Lett. 83 (2003) 2049-2051.
[40] Y. H. Cheng, T. Browne, B. Heckerman, E. I. Meletis, Mechanical and tribological properties of nanocomposite TiSiN coatings, Surf. Coat. Technol. 204 (2010) 2123–2129.
[41] M. Diserens, J. Patscheider, F. Le´vy, Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films, Surf. Coat. Technol. 120–121 (1999) 158–165.
[42] O. Knotek, M. Böhmer, T. Leyendecker, F. Jungblut, The structure and composition of Ti-Zr-N, Ti-Al-Zr-N and Ti-Al-V-N coatings, Mater. Sci. Eng. A 105 (1988) 481-488.
[43] A. Hoerling, J. Sjölén, H. Willmann, T. Larsson, M. Odén, L. Hultman, Thermal stability, microstructure and mechanical properties of Ti1 − xZrxN thin films, Thin Solid Films 516 (2008) 6421-6431.
[44] Z. T. Y. Liu, B. P. Burton, S. V. Khare, D. Gall, First-principles phase diagram calculations for the rocksalt-structure quasibinary systems TiN–ZrN, TiN–HfN and ZrN–HfN, J. Phys.: Condens. Matter 29 (2017) 035401.
[45] Y.-W. Lin, H.-A. Chen, G.-P. Y, J.-H. Huang, Effect of bias on the structure and properties of TiZrN thin films deposited by unbalanced magnetron sputtering, Thin Solid Films 618 (2016) 13-20.
[46] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films 518 (2010) 7308-7311.
[47] Y.-W. Lin, C.-W. Lu, G.-P. Yu, J.-H. Huang, Structure and properties of nanocrystalline (TiZr)xN1-x thin films deposited by DC unbalanced magnetron sputtering, J. Nanomater. 2016 (2016) 2982184.
[48] G. Abadias, V.I. Ivashchenko, L. Belliard, P. Djemia, Structure, phase stability and elastic properties in the Ti1–xZrxN thin-film system: Experimental and computational studies, Acta Mater. 60 (2012) 5601-5614.
[49] C.-H. Ma, J.-H. Huang, H. Chen, Nanohardness of nanocrystalline TiN thin films, Surf. Coat. Technol. 200 (2006) 3868-3875.
[50] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate, J. Vac. Sci. Technol. A 28 (2010) 774-778.
[51] C.-Y. Chen, Characterization of Structure and Mechanical Properties of Nano-crystalline TiZrN Films Deposited by Unbalanced Magnetron Sputtering: Effect of Ti and Zr Target Current, National Tsing Hua University, Hsinchu, Taiwan, 2015.
[52] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol. 239 (2014) 20-27.
[53] J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films, Thin Solid Films, 171 (1989) 5-31.
[54] H. Oettel, R. Wiedemann, S. Preiβ1er, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol. 74 (1995) 273-278.
[55] F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel, Thin Solid Films 311 (1997) 138-145.
[56] P.R. Chalker, S.J. Bull, D.S. Rickerby, A review of the methods for the evaluation of coating-substrate adhesion, J. Mater. Sci. Eng. A 140 (1991) 583-592.
[57] I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A 21 (2003) S117-S128.
[58] H. Ljungcrantz, L. Hultman, J.-E. Sandgrens, Residual stresses and fracture properties of magnetron sputtered Ti films on Si microelements, J. Vac. Sci. Technol. A 11 (1993) 543-553.
[59] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A. Mat. A82 (1909) 172-175.
[60] C. A. Klein, How accurate are Stoney’s equation and recent modifications, J. Appl. Phys. 88 (2000) 5487-5489.
[61] C.-H. Ma, J.-H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films 418 (2002) 73-78.
[62] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice Hall, New Jersey, 2001, p.466.
[63] V. Hauk, Structure and residual stress analysis by nondestructive methods, 1st ed., Elsevier Science, Aachen, Germany, 10 Nov 1997.
[64] A.-N. Wang, C.-P. Chuang, G.-P. Yu, J.-H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Technol. 262 (2015) 40-47.
[65] A.-N. Wang, J.-H Huang, H.-W. Hsiao, G.-P. Yu, H. Chen, Residual stress measurement on TiN thin films by combining nanoindentation and average X-ray strain (AXS) method, Surf. Coat. Technol. 280 (2015) 43-49.
[66] G. Abadias, Y.Y. Tse, Diffraction stress analysis in fiber-textured TiN thin films grown by ion-beam sputtering: Application to (001) and mixed (001)+(111) texture, J. Appl. Phys. 95 (2004) 2414-2427.
[67] D.S. Rickerby, S.J. Bull, T. Robertson, A. Hendry, The role of titanium in the abrasive wear resistance of physically vapour-deposited TiN, Surf. Coat. Technol. 401 (1990) 63-74.
[68] R. Ali, M. Sebastiani, E. Bemporad, Influence of Ti-TiN multilayer PVD-coatings design on residual stresses and adhesion, Mater. Des. 75 (2015) 47-56.
[69] W.-L. Pan, G.-P. Yu, J.-H. Huang, Mechanical properties of ion-plated TiN films on AISI D2 steel, Surf. Coat. Technol. 110 (1998) 111-119.
[70] S. Lei, J.-H. Huang, H. Chen, Measurement of residual stress on TiN/Ti bilayer thin films using average X-ray strain combined with laser curvature and nanoindentation methods, Mater. Chem. Phys. 199 (2017) 185-192.
[71] T. Tsuchiya, M. Hirata, N. Chiba, Young’s modulus, fracture strain, and tensile strength of sputtered titanium thin films, Thin Solid Films 484 (2005) 245-250.
[72] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films, Surf. Coat. Technol. 200 (2006) 5937-5945.
[73] T.-W. Zheng, Effect of Ti Interlayer on Stress Relief of ZrN/Ti Bilayer Thin Films on Silicon Substrate, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, 2018.
[74] R.M.C. William, F. Hosford, Metal forming mechanics and Metallurgy, Third edition, Cambridge, New York, 2007.
[75] P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2 (1918) 98-100.
[76] L. V. Azaroff, M. J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, 1958.
[77] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
[78] J. J. Wortman, R. A. Evans, Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium, J. Appl. Phys. 36 (1956) 153-156.
[79] B. B. He, Two-Dimensional X-Ray Diffraction, John Wiley & Sons, Inc., 2018, pp. 334.
[80] J. A. Sue, X-ray elastic constants and residual stress of textured titanium nitride coating, Surf. Coat. Technol. 54 (55) (1992) 154-159.
[81] S. Monteiro, R. Reed-Hill, An empirical analysis of titanium stress-strain curves, Metall. Trans. 4 (1973) 1011-1015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *