帳號:guest(3.145.102.131)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高偉陞
作者(外文):Kao, Wei-Sheng
論文名稱(中文):二氧化鈦光觸媒被覆於碳鋼之防蝕能力、表面親水性以及抗菌性之研究
論文名稱(外文):The Influence of Titanium Oxide coating on Carbon Steels in the Aspects of Corrosion Mitigation, Photo-induced Hydrophilicity and Anti-bacterial Behavior
指導教授(中文):葉宗洸
指導教授(外文):Yeh, Tsung-Kuang
口試委員(中文):王美雅
黃俊源
馮克林
口試委員(外文):Wang, Mei-Ya
Huang, Jiunn-Yuan
Feng, Clinton
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011504
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:116
中文關鍵詞:二氧化鈦腐蝕防制光誘發表面親水性抗菌性
外文關鍵詞:TitaniumCorrosionHydrophilicityAnti-bacterial
相關次數:
  • 推薦推薦:0
  • 點閱點閱:918
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用溶膠凝膠法 (Sol-gel method)製備二氧化鈦膠體並將其被覆於碳鋼
(Carbon Steel, CS)以及氧化銦錫導電玻璃上(Indium tin oxide, ITO),分別探討二氧化鈦被
覆在碳鋼與ITO上所呈現的腐蝕防制、光誘發表面親水性以及抗菌性等三種特性。首先,
在腐蝕防制部分,直接將二氧化鈦被覆於碳鋼表面,鍛燒過程中鐵離子會擴散進入二氧
化鈦薄膜內,使光催化效果降低,因此必須將碳鋼進行預長氧化膜處理,本實驗探討不
同預長氧化膜條件以及鍛燒熱處理的組合,讓二氧化鈦擁有良好結晶性的同時,鐵離子
也能有效被阻隔,實驗結果顯示最佳腐蝕防制參數為:碳鋼預氧化 600°C 維持 5 分鐘,
被覆二氧化鈦並熱處理 400°C 維持 60 分鐘,電位由-54mVAg/AgCl 降低到-263mVAg/AgCl,
電位變化為-210mV,電流密度由 1.24 x 10-8A/cm2 降低到 4.49 x 10-13 A/cm2,約 4 個數量
級。接著在光誘發表面親水性的部分,利用接觸角量測儀量測不同氧化膜之水接觸角,
再觀察被覆完二氧化鈦後的水接觸角,最後再照射紫外光探討二氧化鈦光催化表面親水
的性質,結果顯示被覆完二氧化鈦後,表面都變得比被覆前疏水,在照射紫外光下,水
接觸角會接近 0°,顯示此時極親水的現象 (Super-hydrophilic)。最後在抗菌性的部分,
首先觀察大腸桿菌(Escherichia coli, E.coli)在指定培養基生長的情形,每隔一段時間觀察
菌落形成單位 (Colony Forming Unit, CFU),並繪製出生長曲線,結果顯示 0-1.5 小時為
潛伏期,1.5-7 小時為指數生長期,倍增時間(doubling time)約為 23 分鐘,7-24 小時為平
坦期,飽和 E.coli 菌液密度大約在 1-2 x 109 CFU/ml,到了 24 小時之後進入死亡期。接
著將生長曲線顯示之飽和 E.coli 菌液置於 ITO.TiO2、CS、CS.TiO2、control 等表面並搭
配 100%、10%、5%與 1% 強度之紫外光照射,探討細胞生存情形,繪製出存活曲線,
結果顯示紫外光強度降低會使細菌存數量上升,且在不同紫外光強度照射下,抗菌效果
由高至低依序皆為 ITO.TiO2、CS.TiO2、CS、Control。本研究成功利用溶膠凝膠法製備
出二氧化鈦,並能顯著地抑制腐蝕情形、紫外光照射下呈現完全親水以及一定程度的抗
菌性。
In this study, carbon steels (CSs) and Indium tin oxide (ITOs) with a titanium oxide(TiO2)
coating applied by the sol-gel method were investigated in three aspects, including preventing
or minimizing the atmospheric corrosion, photo-induced surface hydrophilicity and anti
bacterial properties. In the corrosion mitigation part, if TiO2 was directly coated on plain CS
and then annealed, the photocatalytic effect was poor. During the thermal treatment process,
iron atoms would diffuse from CS to TiO2 and limit the photocatalytic effect. Therefore, the
pre-oxidation process was necessary. Various oxide structures of carbon steel and the TiO2
thermal treatment process were investigated in this study. According to the experiment results,
the optimum processing parameter was pre-oxidizing on carbon steel at 600°C for 5 min,
coating TiO2 and then conducting thermal treatment at 400°C for 60min. Electrode potential
decreased from -54mVAg/AgCl to -263mVAg/AgCl, and the potential difference was -210mV .
Current density decreased from 1.237 x 10-8A/cm2 to 4.489 x 10-13 A/cm2 about four orders of
magnitude drop. In the photo-induced surface hydrophilicity part, we first used the sessile drop
method to measure the contact angle(CA) of different oxide films and we observed the CA of
TiO2 coated specimens and then measured the CA changes under UV illumination. These results
indicated that after coating the TiO2 on the pre-oxidized carbon steels, the CA increased while
under UV illumination the CA would decrease to almost 0°,which is a super-hydrophilic surface.
Last, in the anti-bacterial properties part, we first observed the Escherichia coli growth under
designated medium by measuring the colony forming unit (CFU) every a period of time and
draw a growth curve. Results showed that in the first 1.5h is lag phase, during 1.5-7 h is
exponential phase and doubling time is about 23 min, during 7-24h is stationary phase and the
maximum cell density of 1-2 x 109 CFU/ml is observed, after 24h is in dead phase. Then the
saturated E. coli bacteria solution (1-2 x 109) derived in the growth curve was placed on
different surfaces, i.e. ITO.TiO2, CS.TiO2, CS, Control, and irradiated with 100% and 10%


iii

intensity ultraviolet light (UV) to explore the viability of the cells and draw a survival curve.
These results reveal that no matter under 100% or 10% UV intensity the viable cell density
sequence from high to low was ITO.TiO2, CS.TiO2, CS, Control. This study concluded that the
titanium oxide prepared by the sol-gel method can significantly inhibit the corrosion behavior,
and it is completely hydrophilic under ultraviolet irradiation and has a certain degree of
antibacterial properties.
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 理論基礎 5
2.1腐蝕之電化學 5
2.1.1混合電位模型 (Mixed Potential Model, MPM) 5
2.1.2 電位-酸鹼圖 (E-pH diagram, Pourbaix diagram) 7
2.1.3 伊凡斯圖 (Evans Diagram)與極化曲線 (Polarization curve) 8
2.1.4 防蝕機制 11
2.2 表面能與接觸角 14
2.3 微生物學實驗 15
2.3.1 大腸桿菌簡介 16
2.3.2 生長曲線 (Growth curve) 16
2.3.3 光催化滅菌機制 18
第三章 文獻回顧 20
3.1 二氧化鈦發展概述 21
3.2 二氧化鈦腐蝕防制 25
3.3 光誘發二氧化鈦表面親水性 28
3.4 二氧化鈦表面抗菌性 39
3.5 溶膠凝膠法 48
3.6 碳鋼於高溫環境之氧化情形 49
第四章 實驗方法 54
4.1實驗方法與流程 54
4.2試片製備 55
4.2.1 試片研磨 55
4.2.2 預長氧化膜 55
4.2.3二氧化鈦薄膜製備 57
4.2.4 製備鑲埋試片 58
4.3電化學分析 58
4.3.1開路電位 (Open Circuit Potential) 59
4.3.2動態極化掃描 (Potential Dynamic Polarization) 59
4.4試片分析 60
4.4.1共軛聚焦微拉曼光譜儀 60
4.4.2低掠角X光繞射 60
4.4.3高解析場發射掃描式電子顯微鏡 61
4.5 接觸角分析 61
4.6 抑菌性分析 61
4.6.1液態培養 62
4.6.2 固態培養 63
4.6.3 生長曲線 65
4.6.4存活曲線 65
第五章 結果與討論 70
5.1 二氧化鈦防蝕特性 70
5.1.1 ITO被覆二氧化鈦 70
5.1.2不同預長氧化膜條件的特性分析 71
5.1.2.1 預長氧化膜拉曼分析 71
5.1.2.2 掃描式電子顯微鏡截面分析 73
5.1.2.3 電化學分析 76
5..1.3 二氧化鈦被覆於不同氧化層的影響 82
5.1.3.1 電化學分析 82
5.1.3.2 SEM截面分析 86
5.1.4 不同二氧化鈦熱處理製程參數的影響 91
5.1.4.1 電化學分析 91
5.1.4.2 SEM截面分析 94
5.1.5 改變紫外光照射強度之電位變化 97
5.2二氧化鈦光誘發表面親水性 99
5.2.1 預長氧化膜碳鋼接觸角 99
5.2.2 二氧化鈦被覆誘發表面親水性 99
5.3 二氧化鈦抗菌性 100
5.3.1 E.Coli 生長曲線 100
5.3.2 紫外光照射時間對E.coli存活之影響 102
5.3.3 不同紫外光強度對E.coli存活之影響 103
第六章 結論 105
第七章 未來工作 107
參考文獻 108

[ 1] D. P. Macwan , P. N. Dave, S. Chaturvedi, “A review on nano-TiO2 sol-gel type syntheses and its applications”, J Mater Sci, 46 (2011) 3669-3686.
[ 2] Steven N. Frank, Allen J. Bard, “Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at T1O2 Powder”, J. Am. Chem. Soc., .99 (1977) 303.
[ 3] T. Watanabe, K. Hashimoto and A. Fujishima: Proc. 1st Int. Conf. TiO2 Photocatalyst, ed. H. Al-Ekabi, (1992).
[ 4] A. Heller, “Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films” Acc. Chem. Res., 28 (1995) 503.
[ 5] K. Sunada, Y. Kikuchi, K. Hashimoto and A. Fujishima, “Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts”, Environ. Sci. Technol., 32 (1998) 726.
[ 6] K. Sunada, T. Watanabe and K. Hashimoto, ” Bactericidal Activity of Copper-Deposited TiO2 Thin Film under Weak UV Light Illumination”, Environ. Sci. Technol., 37 (2003) 4785.
[ 7] M. Miyauchi, A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, “Photoinduced Surface Reactions on TiO2 and SrTiO3 Films: Photocatalytic Oxidation and Photoinduced Hydrophilicity” Chem. Mater.,12 (2000) 3.
[ 8] R. D. Sun, A. Nakajima, A. Fujishim, T. Watanabe and K. Hashimoto, “Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films” J. Phys. Chem. B, 105, (2001) 1984.
[ 9] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, “Photogeneration of Highly Amphiphilic TiO2 Surface”, T. Adv. Mater., 10 (1998) 135.
[ 10] N. Sakai, R. Wang, A. Fujishima, T. Watanabe and K. Hashimoto, ” Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces” Langmuir, 14 (1998) 5918.
[ 11] R. Wang, N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, “Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces” J. Phys. Chem. B, 103 (1999) 2188.
[ 12] N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, “Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle” J. Phys. Chem. B, 107 (2003) 1028.
[ 13] J. Huang, , T. Shinohara and S. Tsujikawa, “Protection of Carbon Steel from Atmospheric Corrosion by TiO2 Coating”, Zairyo-to-Kankyo, 48 (1999) 575-582.
[ 14] J. Yuan, R. Fujisawa and S. Tsujikawa, “Photopotentials of Copper Coated with TiO2 by Sol-Gel Method”, Zairyo-to-Kankyo, 43 (1994) 433-440.
[ 15] J. Yuan and S. Tsujikawa, “Photo-Effects of Sol-Gel Derived TiO2 Coating on Carbon Steel in Alkaline Solution”, Zairyo-to-Kankyo, 44 (1995) 534-542.
[ 16] G. X. Shen, Y. C. Chen, C. J. Lin, “Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method”, Thin Solid Films, 489 (2005) 130-136
[ 17] J.Huang, T. Shinohara and S. Tsujikawa, “Effects of Interfacial Iron Oxides on Corrosion Protection of Carbon Steel by TiO2 Coating under Illumination”, Zairyo-to-Kankyo, 46 (1997) 651-661.
[ 18] J. Huang, T. Konishi, T. Shinohara and S. Tsujikawa, “Sol-Gel Derived Ti-Fe Oxide Coating for Photoelectrochemical Cathodic Protection of Carbon Steel”, Zairyo-to-Kankyo, 47 (1998) 193-199.
[ 19] A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238 (1972) 37.
[ 20] Xiaoxue Zhang, Ling Wangb and Erkki Levänena, “Superhydrophobic surfaces for the reduction of bacterial adhesion”, RSC advance, 3 (2013) 12003.
[ 21] Abraham Marmur, ” The Lotus Effect Superhydrophobicity and Metastability”, Langmuir, 20 (2004) 3517-3519.
[ 22] T. Young, “An essay on the cohesion of fluids”, Philos. Trans. R. Soc. London, 95 (1805), 65–87.
[ 23] Akira Nakajima, “Design of hydrophobic surfaces for liquid droplet control”, NPG Asia Mater., 3 (2011) 49–56.
[ 24] A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces”, Trans. Faraday Soc., 40 (1944), 546-550.
[ 25] D. D. Macdonald, "Viability of Hydrogen Water Chemistry fot protecting In-Vessel Components of Boiling Water Reactors", corrosion, 48 (1992) 194-205.
[ 26] J.R. Selman, C.W. Tobias, “Advances in Chemical Engineering”, New York, NY: Academic Press, (1978)
[ 27] Y.Tan, “Heterogeneous Electrode Processes and Localized Corrosion”, Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. (2012) 10-17.
[ 28] U. R. Evans, “An Introduction to Metallic Corrosion”, 3rd ed., Edward Arnold, London, (1981).
[ 29] D. A. Jones, “Principles and Prevention of Corrosion”, 2nd ed., Prentice Hall, Upper Saddle River, NJ, (1996).
[ 30] G. Fontana, “Corrosion Engineering”, 3rd ed., McGraw-Hill, New York, (1987).
[ 31] A. Marmur, ” The Lotus Effect Superhydrophobicity and Metastability”, Langmuir, 20 (2004) 3517-3519.
[ 32] T. Young, “An essay on the cohesion of fluids”, Philos. Trans. R. Soc. London, 95 (1805) 65–87
[ 33] A. Nakajima, “Design of hydrophobic surfaces for liquid droplet control”, NPG Asia Mater., 3 (2011) 49–56.
[ 34] A.G. Rincón and C. Pulgarin ,“Photocatalytical inactivation of E. coli: effect of (continuous–intermittent) light intensity and of (suspended–fixed) TiO2 concentration”, Applied Catalysis B: Environmental, 44 (2003) 263-284
[ 35] R. Das, “Application Photocatalysis for Treatment of Industrial Waste Water—A Short Review”, Open Access Library Journal, 1 (2014) No.5, August 11.
[ 36] A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide photocatalysis”, Journal of Photochemistry and Photobiology C, 1 (2000) 1-21.
[ 37] S. Malato, P Fernandez, I. banezM, .I. Maldonado, J. Blanco, W. Gernjak, “Decontamina-tion and disinfection of water by solar photocatalysis: Recent overview and trends”, Catalysis Today, 147 (2009) 1-59
[ 38] Comparelli R, Fanizza E, Curri ML, Cozzoli PD, Mascolo G, Passino R, Agostiano A,”Photocatalytic Activity of Nanocomposite Catalyst Films Based on Nanocrystalline Metal/Semiconductors”, physical chemistry (2005) 12033-12040
[ 39] P. V. Ananthapamanabhan, M. Vijay, T. K. Thiyagarajan, “In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization”, Plasma Science and Technology,12 (2010) No.4, Aug.
[ 40] Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA,” Bactericidal Activity of Photocatalytic TiO2 Reaction: toward an Understanding of Its Killing Mechanism”, applied and environment microbiology, (1999) 4094-4098.
[ 41] J. Zhang, P. Zhou, J. Liu and J. Yu, “New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2”, Phys. Chem. Chem. Phys.,16 (2014) 20382.
[ 42] D. P. Macwan , P. N. Dave, S. Chaturvedi, “A review on nano-TiO2 sol-gel type syntheses and its applications”, J Mater Sci, 46 (2011) 3669–3686.
[ 43] Meacock G, Taylor KDA, Knowles M, Himonides,” A Review of the Production Cycle of Titanium Dioxide Pigment”, Materials Sciences and Applications, 5 (2014) 441-458.
[ 44] L. Kavan, M. Gra ¨zel, S. E. Gilbert, C. Klemenz and H. J. Scheel “Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase” J. Am. Chem. Soc., 118 (1996) 6716.
[ 45] J. Zhang, P. Zhou, J. Liu and J. Yu, “New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2”, Phys. Chem. Chem. Phys., 16 (2014) 20382.
[ 46] A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode” Nature, 238 (1972) 37.
[ 47] T. Kawai and T. Sakata, “Conversion of carbohydrate into hydrogen fuel by a photocatalytic process” Nature, 286 (1980) 474.
[ 48] K. Hashimoto,” TiO2 Photocatalysis: A Historical Overview and Future Prospects”, Jpn. J. Appl. Phys., 44 (2005) 8269.
[ 49] Steven N. Frank, Allen J. Bard, “Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at TiO2 Powder”, J. Am. Chem. Soc., 99 (1977) 303.
[ 50] M. Anpo, T. Hirao and N. Itoh, “Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst”, catalysis letters, 67 (2000) 135-137.
[ 51] W. Choi, A. Termin and M.R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics”, J. Phys. Chem., 98 (1994) 13669.
[ 52] R. Asahi, T. Ohwaki, K. Aoki and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science, 293 (2001) 269.
[ 53] T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, “Band gap narrowing of titanium dioxide by sulfur doping”, Appl. Phys. Lett., 81 (2002) 454.
[ 54] T. Ohno, T. Mitsui and M. Matsumura, “Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light”, Chem. Lett., 32 (2003) 364.
[ 55] H. Irie, Y. Watanabe and K. Hashimoto, “Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst”, Chem. Lett., 32 (2003) 772.
[ 56] Q. Zhang and C. Li, “Pure Anatase Phase Titanium Dioxide Films Prepared by Mist Chemical Vapor Deposition”, nanomaterial, 8 (2018) 827-839.
[ 57] Jian Pan, Gang Liu, Gao Qing (Max) Lu, and Hui-Ming Cheng, “On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals”, German Chemical Society, 50 (2011) Issue9 2133-2137.
[ 58] U.G. Akpan, B.H. Hameed, “Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review”, Journal of Hazardous Materials, 170, (2009), 520-529.
[ 59] Dorian A. H. Hanaor ,Charles C. Sorrell, “Review of the anatase to rutile phase transformation”, J Mater Sci.,46 (2011) 855-874.
[ 60] R. D. Sun, A. Nakajima, A. Fujishim, T. Watanabe and K. Hashimoto, “Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films” J. Phys. Chem. B, 105 (2001) 1984.
[ 61] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, “Photogeneration of Highly Amphiphilic TiO2 Surface”, T. Adv. Mater., 10 (1998) 135.
[ 62] N. Sakai, R. Wang, A. Fujishima, T. Watanabe and K. Hashimoto, ” Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces” Langmuir, 14 (1998) 5918.
[ 63] R. Wang, N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, “Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces” J. Phys. Chem. B, 103 (1999) 2188.
[ 64] N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, “Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle” J. Phys. Chem. B, 107 (2003) 1028.
[ 65] T. Shibata, H. Irie and K. Hashimoto, “Enhancement of Photoinduced Highly Hydrophilic Conversion on TiO2 Thin Films by Introducing Tensile Stress” J. Phys. Chem. B, 107 (2003) 10696.
[ 66] A. Heller, “Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films” Acc. Chem. Res., 28 (1995) 503.
[ 67] K. Sunada, Y. Kikuchi, K. Hashimoto and A. Fujishima, “Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts”, Environ. Sci. Technol., 32 (1998) 726.
[ 68] K. Sunada, T. Watanabe and K. Hashimoto, ” Bactericidal Activity of Copper-Deposited TiO2 Thin Film under Weak UV Light Illumination”, Environ. Sci. Technol., 37 (2003) 4785.
[ 69] T. Rojviroon and S. Sirivithayapakorn, “E. coli Bacteriostatic Action Using TiO2 Photocatalytic Reactions”, Hindawi International Journal of Photoenergy Volume, Article ID 8474017, (2018).
[ 70] A.G. Rincón and C. Pulgarin ,“Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration”, Applied Catalysis B: Environmental, 44 (2003) 263-284.
[ 71] Y. Li, W. Zhang, J. Niu, and Y. Chen, “Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles”, ACS Nano, 6 (2012) 5164-5173.
[ 72] Graham, T. J., “On the Properties of Silicic Acid and other Analogous Colloidal Substances.”, Chem. Soc., 17 (1864) 318.
[ 73] Heinz K. H., “Crystal Growth in Gels”, Pennsylvania State University Press: State College, PA, (1970).
[ 74] Rayleigh, L. Philos. Mag., 38 (1919) 738.
[ 75] C. Khadikar, ”The Effect of Adsorbed Poly(vinyl Alcohol) on the Properties of Model Silica Suspensions.”, Ph.D. Dissertation; University of Florida, department of chemistry, (1988).
[ 76] Mackenzie, J. D. J. Non-Cryst. Solids, “State of the art and prospects of glass science”, Journal of Non-crystalline solids, 41 (1982) 1.
[ 77] Onoda, G., Hench, L. L., Eds., “Science of Ceramic Processing Before Firing”, Wiley: New York, (1978).
[ 78] Flory, P. J., “Principles of Polymer Chemistry”, Cornell University Press: Ithaca, NY, (1953); Chapter IX.
[ 79] Suresh C. Pillai and S. Hehir Editors, “Sol-Gel Materials for Energy, Environment and Electronic Applications”, Springer International Publishing, (2017), Library of Congress Control Number: 2016958479 ch1, ch7and ch9.
[ 80] L. S. Darken and R. W. Gurry, ” Equilibrium and Thermodynamics of Liquid Oxide and Other Phases”, Chem. Soc., 68 (1946) 798-816.
[ 81] D. Caplan, G. I. Sproule, R. J. Hussey, and M. Graham, “Oxidation of Fe-C Alloys at 500°C”, Oxidation of Metals, 12 (1978) 1.
[ 82] J. Rujisomnapa, P. Seechompoo, P. Suwannachoat, S. Suebca and P. Wongpanya, “High Temperature Oxidation Behaviour of Low Carbon Steel and Austenitic Stainless Steel”, Journal of Metals, Materials and Minerals, 20 (2010), 31-36.
[ 83] M. Marciuš, M. Ristić, M. Ivanda, and S. Musić, “Formation of Iron Oxides by Surface Oxidation of Iron Plate”, Croat. Chem. Acta, 85 (2012) 117-124.
[ 84] S. J. Oh, D. C. Cook, and H. E. Townsend, “Characterization of iron oxides commonly formed as corrosion products on steel”, Hyperfine Interactions , journal article col., 112 (1998) 59-66.
[ 85] K. Hauffe, "Oxidation of Metals", Plenum Press, New York, (1965) 273.
[ 86] F. I. Chou and S. T. Tan, “Salt-Mediated Multicell Formation in Deinococcus radiodurans”, Journal of Bacteriology, 173 (1991) 3184-3190.
[ 87] F. I. Chou and S. T. Tan,” Manganese(II) Induces Cell Division and Increases in Superoxide Dismutase and Catalase Activities in an Aging Deinococcal Culture”, Journal of Bacteriology, 173 (1990) 2029-2035.
[ 88] 高偉陞,葉宗洸,王美雅,「二氧化鈦薄膜之光化學特性對碳鋼之腐蝕防制之效益研究」,108年防蝕工程年會暨論文發表會 132
[ 89] 維基百科https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E5%85%89

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *