|
[1]Q. Huang, J. Jiang, “An overview of radiation effects on electronic devices under severe accident conditions in NPPs, rad-hardened design techniques and simulation tools,” Prog. Nucl. Energy 114, 105-120 (2019).
[2]T.R. Oldham, F. McLean, “Total ionizing dose effects in MOS oxides and devices,” IEEE Trans. Nucl. Sci. 50(3), 483-499 (2003).
[3]D.M. Fleetwood, “Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices,” IEEE Trans. Nucl. Sci. 60(3), 1706-1730 (2013).
[4]J. Srour, C.J. Marshall, P.W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci. 50(3), 653-670 (2003).
[5]J. Srour, J. Palko, “Displacement damage effects in irradiated semiconductor devices,” IEEE Trans. Nucl. Sci. 60(3), 1740-1766 (2013).
[6]V. Ferlet-Cavrois, L.W. Massengill, P. Gouker, “Single event transients in digital CMOS—A review,” IEEE Trans. Nucl. Sci. 60(3), 1767-1790 (2013).
[7]P.E. Dodd, L.W. Massengill, “Basic mechanisms and modeling of single-event upset in digital microelectronics,” IEEE Trans. Nucl. Sci. 50(3), 583-602 (2003).
[8]J. Stephen, T. Sanderson, D. Mapper, J. Farren, R. Harboe-Sorensen, L. Adams, “Cosmic ray simulation experiments for the study of single event upsets and latch-up in CMOS memories,” IEEE Trans. Nucl. Sci. 30(6), 4464-4469 (1983).
[9]R. Koga, W.A. Kolasinski, “Heavy ion induced snapback in CMOS devices,” IEEE Trans. Nucl. Sci. 36(6), 2367-2374 (1989).
[10]J.H. Hohl, K.F. Galloway, “Analytical model for single event burnout of power MOSFETs,” IEEE Trans. Nucl. Sci. 34(6), 1275-1280 (1987).
[11]E. Normand, J.L. Wert, D.L. Oberg, P. Majewski, P. Voss, S. Wender, “Neutron-induced single event burnout in high voltage electronics,” IEEE Trans. Nucl. Sci. 44(6), 2358-2366 (1997).
[12]G.H. Johnson, J.H. Hohl, R.D. Schrimpf, K.F. Galloway, “Simulating single-event burnout of n-channel power MOSFET's,” IEEE Trans. Electron Devices 40(5), 1001-1008 (1993).
[13]F. Sexton, D. Fleetwood, M. Shaneyfelt, P. Dodd, G. Hash, “Single event gate rupture in thin gate oxides,” IEEE Trans. Nucl. Sci. 44(6), 2345-2352 (1997).
[14]J. Brews, M. Allenspach, R. Schrimpf, K. Galloway, J. Titus, C.F. Wheatley, “A conceptual model of a single-event gate-rupture in power MOSFETs,” IEEE Trans. Nucl. Sci. 40(6), 1959-1966 (1993).
[15]J.L. Titus, C.F. Wheatley, “Experimental studies of single-event gate rupture and burnout in vertical power MOSFETs,” IEEE Trans. Nucl. Sci. 43(2), 533-545 (1996).
[16]C. Gwyn, “Model for radiation‐induced charge trapping and annealing in the oxide layer of MOS devices,” J. Appl. Phys. 40(12), 4886-4892 (1969).
[17]S. Lai, “Interface trap generation in silicon dioxide when electrons are captured by trapped holes,” J. Appl. Phys. 54(5), 2540-2546 (1983).
[18]J.R. Srour, “Basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits,” (1982).
[19]M. Yoshikawa, H. Itoh, Y. Morita, I. Nashiyama, S. Misawa, H. Okumura, S. Yoshida, “Effects of gamma‐ray irradiation on cubic silicon carbide metal‐oxide‐semiconductor structure,” J. Appl. Phys. 70(3), 1309-1312 (1991).
[20]T. Ohshima, M. Yoshikawa, H. Itoh, Y. Aoki, I. Nashiyama, “γ-Ray irradiation effects on 6H-SiC MOSFET,” MAT SCI ENG B-ADV 61, 480-484 (1999).
[21]S.K. Dixit, S. Dhar, J. Rozen, S. Wang, R.D. Schrimpf, D.M. Fleetwood, S.T. Pantelides, J.R. Williams, L.C. Feldman, “Total Dose Radiation Response of Nitrided and Non-nitrided SiO2/4H-SiC MOS Capacitors,” IEEE Trans. Nucl. Sci. 53(6), 3687-3692 (2006).
[22]R. Arora, J. Rozen, D.M. Fleetwood, K.F. Galloway, C.X. Zhang, J. Han, S. Dimitrijev, F. Kong, L.C. Feldman, S.T. Pantelides, “Charge trapping properties of 3C-and 4H-SiC MOS capacitors with nitrided gate oxides,” IEEE Trans. Nucl. Sci. 56(6), 3185-3191 (2009).
[23]C.X. Zhang, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, S. Dhar, S.-H. Ryu, X. Shen, S.T. Pantelides, “Effects of bias on the irradiation and annealing responses of 4H-SiC MOS devices,” IEEE Trans. Nucl. Sci. 58(6), 2925-2929 (2011).
[24]R. Davis, W. Johnson, K. LARKHOROVITZ, S. Siegel, “Neutron-bombarded germanium semiconductors,” Phys. Rev. 74(9), 1255-1255 (1948).
[25]A. Barry, B. Lehmann, D. Fritsch, D. Braunig, “Energy dependence of electron damage and displacement threshold energy in 6H silicon carbide,” IEEE Trans. Nucl. Sci. 38(6), 1111-1115 (1991).
[26]A. Rempel, H.-E. Schaefer, “Irradiation-induced atomic defects in SiC studied by positron annihilation,” Appl. Phys. A 61(1), 51-53 (1995).
[27]G. Messenger, J. Spratt, “The effects of neutron irradiation on germanium and silicon,” Proc. IRE 46(6), 1038-1044 (1958).
[28]W. Shockley, “The theory of p‐n junctions in semiconductors and p‐n junction transistors,” Bell Syst. Tech. J. 28(3), 435-489 (1949).
[29]F. Smits, “The degradation of solar cells under Van Allen radiation,” IEEE Trans. Nucl. Sci. 10(1), 88-96 (1963).
[30]W. Rosenzweig, H. Gummel, F. Smits, “Solar Cell Degradation under 1‐Mev Electron Bombardment,” Bell Syst. Tech. J. 42(2), 399-414 (1963).
[31]J. Killiany, “Radiation effects on silicon charge-coupled devices,” IEEE Trans. Compon., Hybrids, Manuf. Technol. 1(4), 353-365 (1978).
[32]P. Hazdra, V. Záhlava, J. Vobecký, “Point defects in 4H–SiC epilayers introduced by neutron irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 327, 124-127 (2014).
[33]S. Popelka, P. Hazdra, R. Sharma, V. Zahlava, J. Vobecký, “Effect of neutron irradiation on high voltage 4H-SiC vertical JFET characteristics: characterization and modeling,” IEEE Trans. Nucl. Sci. 61(6), 3030-3036 (2014).
[34]P. Hazdra, S. Popelka, “Displacement damage and total ionisation dose effects on 4H-SiC power devices,” IET Power Electronics 12(15), 3910-3918 (2019).
[35]K. Naruke, M. Yoshida, K. Maeguchi, H. Tango, “Radiation-induced interface states of poly-Si gate MOS capacitors using low temperature gate oxidation,” IEEE Trans. Nucl. Sci. 30(6), 4054-4058 (1983).
[36]P.M. Lenahan, P. Dressendorfer, “Hole traps and trivalent silicon centers in metal/oxide/silicon devices,” J. Appl. Phys. 55(10), 3495-3499 (1984).
[37]P.M. Lenahan, N. Bohna, J. Campbell, “Radiation-induced interface traps in MOS devices: capture cross section and density of states of Pb1 silicon dangling bond centers,” IEEE Trans. Nucl. Sci. 49(6), 2708-2712 (2002).
[38]E.H. Poindexter, P.J. Caplan, B.E. Deal, R.R. Razouk, “Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers,” J. Appl. Phys. 52(2), 879-884 (1981).
[39]J.R. Schwank, M.R. Shaneyfelt, D.M. Fleetwood, J.A. Felix, P.E. Dodd, P. Paillet, V. Ferlet-Cavrois, “Radiation effects in MOS oxides,” IEEE Trans. Nucl. Sci. 55(4), 1833-1853 (2008).
[40]E. Almaz, S. Stone, T.E. Blue, J.P. Heremans, “The effects of neutron irradiation and low temperature annealing on the electrical properties of highly doped 4H silicon carbide,” Nucl. Instrum. Methods Phys. Res., Sect. A 622(1), 200-206 (2010).
[41]J. Meese, “A review of NTD-induced defects in silicon,” MRS Online Proceedings Library Archive 2, (1980).
[42]W. Hoffelner, “Irradiation Damage in Nuclear Power Plants,” Springer New York, 1427-1461 (2015).
[43]K. Kwa, S. Chattopadhyay, N. Jankovic, S. Olsen, L. Driscoll, A. O'Neill, “A model for capacitance reconstruction from measured lossy MOS capacitance–voltage characteristics,” Semicond. Sci. Technol. 18(2), 82-87 (2002).
[44]S.C. Witczak, P.S. Winokur, R.C. Lacoe, D.C. Mayer, “Charge separation technique for metal–oxide–silicon capacitors in the presence of hydrogen deactivated dopants,” J. Appl. Phys. 87(11), 8206-8208 (2000).
[45]M. Kuhn, “A quasi-static technique for MOS CV and surface state measurements,” Solid·State Electron. 13(6), 873-885 (1970).
[46]L.M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid·State Electron. 5(5), 285-299 (1962).
[47]R. Pease, E. Enlow, G. Dinger, P. Marshall, “Comparison of proton and neutron carrier removal rates,” IEEE Trans. Nucl. Sci. 34(6), 1140-1146 (1987).
[48]I.P. Vali, P.K. Shetty, M. Mahesha, V. Sathe, D. Phase, R. Choudhary, “Structural and optical studies of gamma irradiated N-doped 4H-SiC,” Nucl. Instrum. Methods Phys. Res., Sect. B 440, 101-106 (2019).
[49]S. Sorieul, J. Costantini, L. Gosmain, G. Calas, J. Grob, L. Thomé, “Study of damage in ion-irradiated α-SiC by optical spectroscopy,” J. Phys.: Condens. Matter 18(37), 8493 (2006).
[50]E. Wendler, T. Bierschenk, F. Felgenträger, J. Sommerfeld, W. Wesch, D. Alber, G. Bukalis, L.C. Prinsloo, N. Van der Berg, E. Friedland, “Damage formation and optical absorption in neutron irradiated SiC,” Nucl. Instrum. Methods Phys. Res., Sect. B 286, 97-101 (2012).
[51]D. Brink, J.B. Malherbe, J. Camassel, “Neutron irradiation effects in SiC,” Nucl. Instrum. Methods Phys. Res., Sect. B 267(16), 2716-2718 (2009).
[52]Y. Cui, X. Hu, K. Yang, X. Yang, X. Xie, L. Xiao, X. Xu, “Influence of nitrogen concentrations on the lattice constants and resistivities of n-type 4H-SiC single crystals,” Cryst. Growth Des. 15(7), 3131-3136 (2015).
[53]S. Nakashima, T. Kitamura, T. Kato, K. Kojima, R. Kosugi, H. Okumura, H. Tsuchida, M. Ito, “Determination of free carrier density in the low doping regime of 4H-SiC by Raman scattering,” Appl. Phys. Lett. 93(12), 121913 (2008).
[54]L. Liu, T. Shen, A. Liu, T. Zhang, S. Bai, S. Xu, P. Jin, Y. Hao, X. Ouyang, “Performance degradation and defect characterization of Ni/4H-SiC Schottky diode neutron detector in high fluence rate neutron irradiation,” Diamond Relat. Mater. 88, 256-261 (2018).
[55]R. Parizotto, H. Boudinov, “Irradiation effects of proton bombarded poly-Si/SiO2/Si structure,” Nucl. Instrum. Methods Phys. Res., Sect. B 218, 362-367 (2004).
[56]D.K. Schroder, “Semiconductor Material and Device Characterization,” Wiley-Interscience, (2006).
[57]D.M. Fleetwood, “Total-Ionizing-Dose Effects, Border Traps, and 1/f Noise in Emerging MOS Technologies,” IEEE Trans. Nucl. Sci., (2020).
[58]V. Amarasinghe, L. Wielunski, A. Barcz, L.C. Feldman, G. Celler, “Properties of H+ implanted 4H-SiC as related to exfoliation of thin crystalline films,” ECS J. Solid State Sci. Technol. 3(3), 37-42 (2014).
[59]S. Sorieul, X. Kerbiriou, J. Costantini, L. Gosmain, G. Calas, C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys.: Condens. Matter 24(12), 125801 (2012).
[60]X. Chen, W. Zhou, Q. Feng, J. Zheng, X. Liu, B. Tang, J. Li, J. Xue, S. Peng, “Irradiation effects in 6H–SiC induced by neutron and heavy ions: Raman spectroscopy and high-resolution XRD analysis,” J. Nucl. Mater. 478, 215-221 (2016).
[61]K. Huang, Q. Jia, T. You, S. Zhang, J. Lin, R. Zhang, M. Zhou, W. Yu, B. Zhang, X. Ou, “Defect formation in MeV H+ implanted GaN and 4H-SiC investigated by cross-sectional Raman spectroscopy,” Nucl. Instrum. Methods Phys. Res., Sect. B 406, 656-661 (2017).
[62]S. Tunhuma, M. Diale, J. Nel, M. Madito, T. Hlatshwayo, F. Auret, “Defects in swift heavy ion irradiated n-4H-SiC,” Nucl. Instrum. Methods Phys. Res., Sect. B 460, 119-124 (2019).
|