帳號:guest(18.119.125.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林亞勳
作者(外文):Lin, Ya-Xun
論文名稱(中文):游離輻射誘發電荷捕獲與晶體缺陷於 4H-SiC 金氧半電容與材料之累增效應研究
論文名稱(外文):Cumulative effects of ionizing radiation-induced charge trapping and crystal defects on 4H-SiC based MOS capacitors and materials
指導教授(中文):梁正宏
趙得勝
指導教授(外文):Liang, Jenq-Horng
Chao, Der-Sheng
口試委員(中文):張廖貴術
黃智方
陳邦旭
口試委員(外文):ChangLiao, Kuei-Shu
Huang, Chih-Fang
Chen, Pang-Shiu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011502
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:114
中文關鍵詞:寬能隙半導體碳化矽輻射損傷總游離劑量效應位移損傷
外文關鍵詞:wide band gap semiconductorsilicon carbideradiation damagetotal ionizing dose effectdisplacement damage
相關次數:
  • 推薦推薦:1
  • 點閱點閱:465
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨於探討寬能隙(wide band gap)半導體碳化矽基電容器與塊材受輻射損傷之累增效應(cumulative effects)影響,並加入矽基電容器以做為對照。本研究所採用的游離輻射源包含伽瑪、中子及質子,研究中也使用蒙地卡羅模擬粒子遷移的計算程式 SRIM (Stopping and Range of Ions in Matter) 預測質子照射的縱深及損傷分佈。經由完整的電性與材料特性分析,藉此釐清不同游離輻射所誘發之總游離劑量效應(Total Ionizing Dose, TID)與位移損傷(Displacement Damage, DD)效應對於碳化矽材料與元件所造成的損傷及特性劣化。
本論文輻照實驗係利用國立清華大學同位素館的 60Co 照射場與清華水池式反應器(Tsing Hua Open-pool Reactor, THOR)的中子源及 Leonard Kroko, Inc. 的離子佈植機產生之質子。從電性分析的研究結果可知,游離輻射於介電層內部之游離能量損失會造成氧化層陷阱電荷與介面能態陷阱電荷改變。非游離能量損失所引發之位移損傷則可能會導致基板的自由載子移除與局部傳導帶不連續性,由此也可評估碳化矽基元件的輻射耐受性。此外,由 N-type 氮摻雜與半絕緣碳化矽塊材之輻射損傷的材料分析結果顯示,中子與質子照射所致之位移損傷會於塊材中產生大量的碳與矽的空位缺陷,造成嚴重的晶格損傷,此現象可由能隙值下降、 Urbach Energy 增加、拉曼光譜特徵波峰相對強度、以及氮施體能態發光中心之光致發光強度變化等結果獲得驗證。
This study aims to investigate the cumulative effects of radiation damage on silicon carbide (SiC)-based Metal-Oxide-Semiconductor (MOS) capacitors and materials. The Si-based MOS capacitors were also used for comparison. The ionizing radiation sources used in this study included gamma rays, neutrons, and protons. The Monte Carlo calculation code SRIM (Stopping and Range of Ions in Matter) was also used in the study to predict the depth and damage distributions of proton irradiation. Through a complete analysis of electrical characteristics and material properties, the mechanisms for the influence of Total Ionizing Dose (TID) and Displacement Damage (DD) effects on SiC materials and devices can be clarified.
The gamma and neutron irradiation experiments were carried out using the Co-60 gamma-ray source and the fission neutrons from the Tsing Hua Open-pool Reactor (THOR), National Tsing Hua University (NTHU). The proton irradiation experiments were performed using the ion implanter provided by Leonard Kroko, Inc. The results of the TID effects indicated that the change of oxide trapping charges and interface states inside dielectric layer induced by ionizing radiation can be attributed to ionizing energy loss (IEL). Moreover, the DD effects caused by non-ionizing energy loss (NIEL) would result in the removal of free carriers from bulk materials and lead to a large conduction band offset in energy bandgap. Relying on the results, the radiation tolerance of the SiC-based devices can be assessed. In addition, the radiation damage effects on n-type and semi-insulating 4H-SiC bulk materials were also investigated by variety of optical spectroscopic techniques. The results indicated that displacement damage induced by neutron and proton irradiation would create a large number of carbon and silicon vacancies in bulk materials and lead to severe lattice damage as well. This can be evidenced by the decrease of energy band gap, the increase of Urbach energy derived from absorption spectra, the relative intensity of the characteristic peaks in Raman spectra, and the intensity variation of photoluminescence peaks emitting from the luminescence centers assigned to N-donor states and carbon vacancies.
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 序論 -1-
第二章 文獻回顧 -5-
2.1 輻射環境 -5-
2.2 輻射損傷研究發展 -7-
2.2.1 總游離劑量效應 -7-
2.2.2 位移損傷效應 -10-
2.3 輻射損傷原理 -14-
2.3.1 總游離劑量效應 -14-
2.3.2 位移損傷效應 -18-
第三章 實驗製程與原理 -22-
3.1 電容器製備 -22-
3.2 伽瑪照射 -22-
3.3 中子照射 -23-
3.4 質子照射 -25-
3.5 SRIM 電腦模擬計算程式 -26-
3.6 特性分析 -28-
3.6.1 高頻電容-電壓量測 -28-
3.6.2 紫外光-可見光光譜儀 -31-
3.6.3 拉曼光譜儀 -34-
3.6.4 螢光光譜儀 -35-
3.6.5 二次離子質譜儀 -36-
第四章 結果與討論 -39-
4.1 伽瑪輻照實驗 -40-
4.1.1 電容-電壓特性曲線分析 -40-
4.2 中子輻照實驗 -47-
4.2.1 電容-電壓特性曲線分析 -47-
4.2.2 吸收光譜 -54-
4.2.3 拉曼光譜 -62-
4.2.4 光致發光 -68-
4.3 質子輻照實驗 -73-
4.3.1 SRIM 模擬 -73-
4.3.2 SIMS 縱深分析 -75-
4.3.3 電容-電壓特性曲線分析 -77-
4.3.4 吸收光譜 -92-
4.3.5 拉曼光譜 -96-
4.3.6 光致發光 -100-
第五章 結論與未來工作 -105-
5.1 結論 -105-
參考文獻 -109-
[1]Q. Huang, J. Jiang, “An overview of radiation effects on electronic devices under severe accident conditions in NPPs, rad-hardened design techniques and simulation tools,” Prog. Nucl. Energy 114, 105-120 (2019).

[2]T.R. Oldham, F. McLean, “Total ionizing dose effects in MOS oxides and devices,” IEEE Trans. Nucl. Sci. 50(3), 483-499 (2003).

[3]D.M. Fleetwood, “Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices,” IEEE Trans. Nucl. Sci. 60(3), 1706-1730 (2013).

[4]J. Srour, C.J. Marshall, P.W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci. 50(3), 653-670 (2003).

[5]J. Srour, J. Palko, “Displacement damage effects in irradiated semiconductor devices,” IEEE Trans. Nucl. Sci. 60(3), 1740-1766 (2013).

[6]V. Ferlet-Cavrois, L.W. Massengill, P. Gouker, “Single event transients in digital CMOS—A review,” IEEE Trans. Nucl. Sci. 60(3), 1767-1790 (2013).

[7]P.E. Dodd, L.W. Massengill, “Basic mechanisms and modeling of single-event upset in digital microelectronics,” IEEE Trans. Nucl. Sci. 50(3), 583-602 (2003).

[8]J. Stephen, T. Sanderson, D. Mapper, J. Farren, R. Harboe-Sorensen, L. Adams, “Cosmic ray simulation experiments for the study of single event upsets and latch-up in CMOS memories,” IEEE Trans. Nucl. Sci. 30(6), 4464-4469 (1983).

[9]R. Koga, W.A. Kolasinski, “Heavy ion induced snapback in CMOS devices,” IEEE Trans. Nucl. Sci. 36(6), 2367-2374 (1989).

[10]J.H. Hohl, K.F. Galloway, “Analytical model for single event burnout of power MOSFETs,” IEEE Trans. Nucl. Sci. 34(6), 1275-1280 (1987).

[11]E. Normand, J.L. Wert, D.L. Oberg, P. Majewski, P. Voss, S. Wender, “Neutron-induced single event burnout in high voltage electronics,” IEEE Trans. Nucl. Sci. 44(6), 2358-2366 (1997).

[12]G.H. Johnson, J.H. Hohl, R.D. Schrimpf, K.F. Galloway, “Simulating single-event burnout of n-channel power MOSFET's,” IEEE Trans. Electron Devices 40(5), 1001-1008 (1993).

[13]F. Sexton, D. Fleetwood, M. Shaneyfelt, P. Dodd, G. Hash, “Single event gate rupture in thin gate oxides,” IEEE Trans. Nucl. Sci. 44(6), 2345-2352 (1997).

[14]J. Brews, M. Allenspach, R. Schrimpf, K. Galloway, J. Titus, C.F. Wheatley, “A conceptual model of a single-event gate-rupture in power MOSFETs,” IEEE Trans. Nucl. Sci. 40(6), 1959-1966 (1993).

[15]J.L. Titus, C.F. Wheatley, “Experimental studies of single-event gate rupture and burnout in vertical power MOSFETs,” IEEE Trans. Nucl. Sci. 43(2), 533-545 (1996).

[16]C. Gwyn, “Model for radiation‐induced charge trapping and annealing in the oxide layer of MOS devices,” J. Appl. Phys. 40(12), 4886-4892 (1969).

[17]S. Lai, “Interface trap generation in silicon dioxide when electrons are captured by trapped holes,” J. Appl. Phys. 54(5), 2540-2546 (1983).

[18]J.R. Srour, “Basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits,” (1982).

[19]M. Yoshikawa, H. Itoh, Y. Morita, I. Nashiyama, S. Misawa, H. Okumura, S. Yoshida, “Effects of gamma‐ray irradiation on cubic silicon carbide metal‐oxide‐semiconductor structure,” J. Appl. Phys. 70(3), 1309-1312 (1991).

[20]T. Ohshima, M. Yoshikawa, H. Itoh, Y. Aoki, I. Nashiyama, “γ-Ray irradiation effects on 6H-SiC MOSFET,” MAT SCI ENG B-ADV 61, 480-484 (1999).

[21]S.K. Dixit, S. Dhar, J. Rozen, S. Wang, R.D. Schrimpf, D.M. Fleetwood, S.T. Pantelides, J.R. Williams, L.C. Feldman, “Total Dose Radiation Response of Nitrided and Non-nitrided SiO2/4H-SiC MOS Capacitors,” IEEE Trans. Nucl. Sci. 53(6), 3687-3692 (2006).

[22]R. Arora, J. Rozen, D.M. Fleetwood, K.F. Galloway, C.X. Zhang, J. Han, S. Dimitrijev, F. Kong, L.C. Feldman, S.T. Pantelides, “Charge trapping properties of 3C-and 4H-SiC MOS capacitors with nitrided gate oxides,” IEEE Trans. Nucl. Sci. 56(6), 3185-3191 (2009).

[23]C.X. Zhang, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, S. Dhar, S.-H. Ryu, X. Shen, S.T. Pantelides, “Effects of bias on the irradiation and annealing responses of 4H-SiC MOS devices,” IEEE Trans. Nucl. Sci. 58(6), 2925-2929 (2011).

[24]R. Davis, W. Johnson, K. LARKHOROVITZ, S. Siegel, “Neutron-bombarded germanium semiconductors,” Phys. Rev. 74(9), 1255-1255 (1948).

[25]A. Barry, B. Lehmann, D. Fritsch, D. Braunig, “Energy dependence of electron damage and displacement threshold energy in 6H silicon carbide,” IEEE Trans. Nucl. Sci. 38(6), 1111-1115 (1991).

[26]A. Rempel, H.-E. Schaefer, “Irradiation-induced atomic defects in SiC studied by positron annihilation,” Appl. Phys. A 61(1), 51-53 (1995).

[27]G. Messenger, J. Spratt, “The effects of neutron irradiation on germanium and silicon,” Proc. IRE 46(6), 1038-1044 (1958).

[28]W. Shockley, “The theory of p‐n junctions in semiconductors and p‐n junction transistors,” Bell Syst. Tech. J. 28(3), 435-489 (1949).

[29]F. Smits, “The degradation of solar cells under Van Allen radiation,” IEEE Trans. Nucl. Sci. 10(1), 88-96 (1963).

[30]W. Rosenzweig, H. Gummel, F. Smits, “Solar Cell Degradation under 1‐Mev Electron Bombardment,” Bell Syst. Tech. J. 42(2), 399-414 (1963).

[31]J. Killiany, “Radiation effects on silicon charge-coupled devices,” IEEE Trans. Compon., Hybrids, Manuf. Technol. 1(4), 353-365 (1978).

[32]P. Hazdra, V. Záhlava, J. Vobecký, “Point defects in 4H–SiC epilayers introduced by neutron irradiation,” Nucl. Instrum. Methods Phys. Res., Sect. B 327, 124-127 (2014).

[33]S. Popelka, P. Hazdra, R. Sharma, V. Zahlava, J. Vobecký, “Effect of neutron irradiation on high voltage 4H-SiC vertical JFET characteristics: characterization and modeling,” IEEE Trans. Nucl. Sci. 61(6), 3030-3036 (2014).

[34]P. Hazdra, S. Popelka, “Displacement damage and total ionisation dose effects on 4H-SiC power devices,” IET Power Electronics 12(15), 3910-3918 (2019).

[35]K. Naruke, M. Yoshida, K. Maeguchi, H. Tango, “Radiation-induced interface states of poly-Si gate MOS capacitors using low temperature gate oxidation,” IEEE Trans. Nucl. Sci. 30(6), 4054-4058 (1983).

[36]P.M. Lenahan, P. Dressendorfer, “Hole traps and trivalent silicon centers in metal/oxide/silicon devices,” J. Appl. Phys. 55(10), 3495-3499 (1984).

[37]P.M. Lenahan, N. Bohna, J. Campbell, “Radiation-induced interface traps in MOS devices: capture cross section and density of states of Pb1 silicon dangling bond centers,” IEEE Trans. Nucl. Sci. 49(6), 2708-2712 (2002).

[38]E.H. Poindexter, P.J. Caplan, B.E. Deal, R.R. Razouk, “Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers,” J. Appl. Phys. 52(2), 879-884 (1981).

[39]J.R. Schwank, M.R. Shaneyfelt, D.M. Fleetwood, J.A. Felix, P.E. Dodd, P. Paillet, V. Ferlet-Cavrois, “Radiation effects in MOS oxides,” IEEE Trans. Nucl. Sci. 55(4), 1833-1853 (2008).

[40]E. Almaz, S. Stone, T.E. Blue, J.P. Heremans, “The effects of neutron irradiation and low temperature annealing on the electrical properties of highly doped 4H silicon carbide,” Nucl. Instrum. Methods Phys. Res., Sect. A 622(1), 200-206 (2010).

[41]J. Meese, “A review of NTD-induced defects in silicon,” MRS Online Proceedings Library Archive 2, (1980).

[42]W. Hoffelner, “Irradiation Damage in Nuclear Power Plants,” Springer New York, 1427-1461 (2015).

[43]K. Kwa, S. Chattopadhyay, N. Jankovic, S. Olsen, L. Driscoll, A. O'Neill, “A model for capacitance reconstruction from measured lossy MOS capacitance–voltage characteristics,” Semicond. Sci. Technol. 18(2), 82-87 (2002).

[44]S.C. Witczak, P.S. Winokur, R.C. Lacoe, D.C. Mayer, “Charge separation technique for metal–oxide–silicon capacitors in the presence of hydrogen deactivated dopants,” J. Appl. Phys. 87(11), 8206-8208 (2000).

[45]M. Kuhn, “A quasi-static technique for MOS CV and surface state measurements,” Solid·State Electron. 13(6), 873-885 (1970).

[46]L.M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid·State Electron. 5(5), 285-299 (1962).

[47]R. Pease, E. Enlow, G. Dinger, P. Marshall, “Comparison of proton and neutron carrier removal rates,” IEEE Trans. Nucl. Sci. 34(6), 1140-1146 (1987).

[48]I.P. Vali, P.K. Shetty, M. Mahesha, V. Sathe, D. Phase, R. Choudhary, “Structural and optical studies of gamma irradiated N-doped 4H-SiC,” Nucl. Instrum. Methods Phys. Res., Sect. B 440, 101-106 (2019).

[49]S. Sorieul, J. Costantini, L. Gosmain, G. Calas, J. Grob, L. Thomé, “Study of damage in ion-irradiated α-SiC by optical spectroscopy,” J. Phys.: Condens. Matter 18(37), 8493 (2006).

[50]E. Wendler, T. Bierschenk, F. Felgenträger, J. Sommerfeld, W. Wesch, D. Alber, G. Bukalis, L.C. Prinsloo, N. Van der Berg, E. Friedland, “Damage formation and optical absorption in neutron irradiated SiC,” Nucl. Instrum. Methods Phys. Res., Sect. B 286, 97-101 (2012).

[51]D. Brink, J.B. Malherbe, J. Camassel, “Neutron irradiation effects in SiC,” Nucl. Instrum. Methods Phys. Res., Sect. B 267(16), 2716-2718 (2009).

[52]Y. Cui, X. Hu, K. Yang, X. Yang, X. Xie, L. Xiao, X. Xu, “Influence of nitrogen concentrations on the lattice constants and resistivities of n-type 4H-SiC single crystals,” Cryst. Growth Des. 15(7), 3131-3136 (2015).

[53]S. Nakashima, T. Kitamura, T. Kato, K. Kojima, R. Kosugi, H. Okumura, H. Tsuchida, M. Ito, “Determination of free carrier density in the low doping regime of 4H-SiC by Raman scattering,” Appl. Phys. Lett. 93(12), 121913 (2008).

[54]L. Liu, T. Shen, A. Liu, T. Zhang, S. Bai, S. Xu, P. Jin, Y. Hao, X. Ouyang, “Performance degradation and defect characterization of Ni/4H-SiC Schottky diode neutron detector in high fluence rate neutron irradiation,” Diamond Relat. Mater. 88, 256-261 (2018).

[55]R. Parizotto, H. Boudinov, “Irradiation effects of proton bombarded poly-Si/SiO2/Si structure,” Nucl. Instrum. Methods Phys. Res., Sect. B 218, 362-367 (2004).

[56]D.K. Schroder, “Semiconductor Material and Device Characterization,” Wiley-Interscience, (2006).

[57]D.M. Fleetwood, “Total-Ionizing-Dose Effects, Border Traps, and 1/f Noise in Emerging MOS Technologies,” IEEE Trans. Nucl. Sci., (2020).

[58]V. Amarasinghe, L. Wielunski, A. Barcz, L.C. Feldman, G. Celler, “Properties of H+ implanted 4H-SiC as related to exfoliation of thin crystalline films,” ECS J. Solid State Sci. Technol. 3(3), 37-42 (2014).

[59]S. Sorieul, X. Kerbiriou, J. Costantini, L. Gosmain, G. Calas, C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys.: Condens. Matter 24(12), 125801 (2012).

[60]X. Chen, W. Zhou, Q. Feng, J. Zheng, X. Liu, B. Tang, J. Li, J. Xue, S. Peng, “Irradiation effects in 6H–SiC induced by neutron and heavy ions: Raman spectroscopy and high-resolution XRD analysis,” J. Nucl. Mater. 478, 215-221 (2016).

[61]K. Huang, Q. Jia, T. You, S. Zhang, J. Lin, R. Zhang, M. Zhou, W. Yu, B. Zhang, X. Ou, “Defect formation in MeV H+ implanted GaN and 4H-SiC investigated by cross-sectional Raman spectroscopy,” Nucl. Instrum. Methods Phys. Res., Sect. B 406, 656-661 (2017).

[62]S. Tunhuma, M. Diale, J. Nel, M. Madito, T. Hlatshwayo, F. Auret, “Defects in swift heavy ion irradiated n-4H-SiC,” Nucl. Instrum. Methods Phys. Res., Sect. B 460, 119-124 (2019).


(此全文20250818後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *