|
1. Liu, C.-M., et al., Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Scientific reports, 2015. 5: p. 9734. 2. Lau, J.H. TSV manufacturing yield and hidden costs for 3D IC integration. in 2010 Proceedings 60th electronic components and technology conference (ECTC). 2010. IEEE. 3. Alves, L.F., et al. SIC power devices in power electronics: An overview. in 2017 Brazilian Power Electronics Conference (COBEP). 2017. IEEE. 4. Zhang, X. and A. Misra, Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scripta Materialia, 2012. 66(11): p. 860-865. 5. Zhao, Y., et al., Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture. Journal of Materials Research, 2012. 27(24): p. 3049. 6. Hsiao, H.-Y., et al., Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper. Science, 2012. 336(6084): p. 1007-1010. 7. Beyerlein, I.J., X. Zhang, and A. Misra, Growth twins and deformation twins in metals. Annual Review of Materials Research, 2014. 44: p. 329-363. 8. Lu, L., et al., Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-426. 9. Zhang, X., et al., High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Applied Physics Letters, 2006. 88(17): p. 173116. 10. Hodge, A., Y. Wang, and T. Barbee Jr, Mechanical deformation of high-purity sputter-deposited nano-twinned copper. Scripta materialia, 2008. 59(2): p. 163-166. 11. Lu, K., L. Lu, and S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale. science, 2009. 324(5925): p. 349-352. 12. Kulkarni, Y., R.J. Asaro, and D. Farkas, Are nanotwinned structures in fcc metals optimal for strength, ductility and grain stability? Scripta Materialia, 2009. 60(7): p. 532-535. 13. Dao, M., et al., Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta materialia, 2006. 54(20): p. 5421-5432. 14. Brandes, E.A. and G. Brook, Smithells metals reference book. 2013: Elsevier. 15. Chen, X., L. Lu, and K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. Journal of applied physics, 2007. 102(8): p. 083708. 16. Bezares, J., et al., Indentation of nanotwinned fcc metals: Implications for nanotwin stability. Acta materialia, 2012. 60(11): p. 4623-4635. 17. Liao, X., et al., High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Applied Physics Letters, 2006. 88(2): p. 021909. 18. Kiritani, M., Story of stacking fault tetrahedra. Materials chemistry and physics, 1997. 50(2): p. 133-138. 19. Zinkle, S., L. Seitzman, and W. Wolfer, I. Energy calculations for pure metals. Philosophical Magazine A, 1987. 55(1): p. 111-125. 20. Singh, B.N., et al., Evolution of stacking fault tetrahedra and its role in defect accumulation under cascade damage conditions. Journal of nuclear materials, 2004. 328(2-3): p. 77-87. 21. Yu, K., et al., Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. Nature communications, 2013. 4(1): p. 1-7. 22. Li, J., et al., In situ study of defect migration kinetics and self-healing of twin boundaries in heavy ion irradiated nanotwinned metals. Nano letters, 2015. 15(5): p. 2922-2927. 23. Chen, K.-C., et al., Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-1069. 24. Bufford, D., H. Wang, and X. Zhang, Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films. Journal of Materials Research, 2013. 28(13): p. 1729. 25. Xu, D., et al., Nanotwin formation and its physical properties and effect on reliability of copper interconnects. Microelectronic Engineering, 2008. 85(10): p. 2155-2158. 26. Saldana, C., et al., Stabilizing nanostructured materials by coherent nanotwins and their grain boundary triple junction drag. Applied Physics Letters, 2009. 94(2): p. 021910. 27. Anderoglu, O., et al., Thermal stability of sputtered Cu films with nanoscale growth twins. Journal of Applied Physics, 2008. 103(9): p. 094322. 28. Upmanyu, M., et al., Molecular dynamics simulation of triple junction migration. Acta materialia, 2002. 50(6): p. 1405-1420. 29. Czubayko, U., et al., Influence of triple junctions on grain boundary motion. Acta materialia, 1998. 46(16): p. 5863-5871. 30. Chan, T.-C., Y.-L. Chueh, and C.-N. Liao, Manipulating the crystallographic texture of nanotwinned Cu films by electrodeposition. Crystal growth & design, 2011. 11(11): p. 4970-4974. 31. Bufford, D., H. Wang, and X. Zhang, High strength, epitaxial nanotwinned Ag films. Acta Materialia, 2011. 59(1): p. 93-101. 32. Ouyang, F.-Y., K.-H. Yang, and L.-P. Chang, Effect of film thickness and Ti interlayer on structure and properties of Nanotwinned Cu thin films. Surface and Coatings Technology, 2018. 350: p. 848-856. 33. Xu, L., et al., Structure and migration of (112) step on (111) twin boundaries in nanocrystalline copper. Journal of Applied Physics, 2008. 104(11): p. 113717. 34. Liu, T.-C., et al., Fabrication and characterization of (111)-oriented and nanotwinned Cu by DC electrodeposition. Crystal Growth & Design, 2012. 12(10): p. 5012-5016. 35. Kelly, P.J. and R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172. 36. Huang, Y.-S., et al., Grain growth in electroplated (1 1 1)-oriented nanotwinned Cu. Scripta Materialia, 2014. 89: p. 5-8. 37. Liu, M., et al., Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nature communications, 2013. 4(1): p. 1-8. 38. Christian, J.W. and S. Mahajan, Deformation twinning. Progress in materials science, 1995. 39(1-2): p. 1-157. 39. Wu, X., et al., New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Physical review letters, 2008. 100(9): p. 095701. 40. Zhu, Y.T. and T.G. Langdon, Influence of grain size on deformation mechanisms: an extension to nanocrystalline materials. Materials Science and Engineering: A, 2005. 409(1-2): p. 234-242. 41. Suzuki, H. and C. Barrett, Deformation twinning in silver-gold alloys. Acta metallurgica, 1958. 6(3): p. 156-165. 42. Meyers, M., O. Vöhringer, and V. Lubarda, The onset of twinning in metals: a constitutive description. Acta materialia, 2001. 49(19): p. 4025-4039. 43. Zhang, X., et al., Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Materialia, 2004. 52(4): p. 995-1002. 44. Carpenter, H.C.H. and S. Tamura, The formation of twinned metallic crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1926. 113(763): p. 161-182. 45. Fullman, R. and J. Fisher, Formation of annealing twins during grain growth. Journal of Applied Physics, 1951. 22(11): p. 1350-1355. 46. Gleiter, H., The formation of annealing twins. Acta metallurgica, 1969. 17(12): p. 1421-1428. 47. Meyers, M.A. and L.E. Murr, A model for the formation of annealing twins in FCC metals and alloys. Acta metallurgica, 1978. 26(6): p. 951-962. 48. Goodhew, P., Annealing twin formation by boundary dissociation. Metal Science, 1979. 13(3-4): p. 108-112. 49. Burgers, W., J. Meijs, and T. Tiedema, Frequency of annealing twins in copper crystals grown by recrystallization. Acta Metallurgica, 1953. 1(1): p. 75-78. 50. Nielsen, J.P., The origin of annealing twins. Acta Metallurgica, 1967. 15(6): p. 1083-1085. 51. Kurzydłowski, K., On the formation of twin grains as a result of grain encounters during the process of recrystallization and grain growth. Scripta metallurgica et materialia, 1991. 25(5): p. 1099-1102. 52. Dash, S. and N. Brown, An investigation of the origin and growth of annealing twins. Acta Metallurgica, 1963. 11(9): p. 1067-1075. 53. Eshelby, J., F. Frank, and F. Nabarro, XLI. The equilibrium of linear arrays of dislocations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1951. 42(327): p. 351-364. 54. Dieter, G.E. and D.J. Bacon, Mechanical metallurgy. Vol. 3. 1986: McGraw-hill New York. 55. Li, Q., J. Cahoon, and N. Richards, On the calculation of annealing twin density. Scripta materialia, 2006. 55(12): p. 1155-1158. 56. Keller, R., S. Baker, and E. Arzt, Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation. Journal of Materials Research, 1998. 13(5): p. 1307-1317. 57. Vaidya, S. and A. Sinha, Effect of texture and grain structure on electromigration in Al-0.5% Cu thin films. Thin Solid Films, 1981. 75(3): p. 253-259. 58. Hommel, M. and O. Kraft, Deformation behavior of thin copper films on deformable substrates. Acta Materialia, 2001. 49(19): p. 3935-3947. 59. Vinci, R., E. Zielinski, and J. Bravman, Thermal strain and stress in copper thin films. Thin solid films, 1995. 262(1-2): p. 142-153. 60. Herbstein, F. and B.L. Averbach, The structure of lithium-magnesium solid solutions—II: Measurements of diffuse X-ray scattering. Acta Metallurgica, 1956. 4(4): p. 414-420. 61. Frost, H., C. Thompson, and D. Walton, Simulation of thin film grain structures—I. Grain growth stagnation. Acta Metallurgica et Materialia, 1990. 38(8): p. 1455-1462. 62. Reed-Hill, R.E., R. Abbaschian, and R. Abbaschian, Physical metallurgy principles. Vol. 17. 1973: Van Nostrand New York. 63. Frost, H., C. Thompson, and D. Walton, Simulation of thin film grain structures—II. Abnormal grain growth. Acta metallurgica et materialia, 1992. 40(4): p. 779-793. 64. Takewaki, T., et al., Formation of giant-grain copper interconnects by a low-energy ion bombardment process for high-speed ULSIs. Materials chemistry and physics, 1995. 41(3): p. 182-191. 65. Greiser, J., P. Müllner, and E. Arzt, Abnormal growth of “giant” grains in silver thin films. Acta materialia, 2001. 49(6): p. 1041-1050. 66. Park, N.-J., et al., Effect of film thickness on the evolution of annealing texture in sputtered copper films. Journal of electronic materials, 2005. 34(12): p. 1500-1508. 67. Sonnweber-Ribic, P., et al., Texture transition in Cu thin films: Electron backscatter diffraction vs. X-ray diffraction. Acta materialia, 2006. 54(15): p. 3863-3870. 68. Zielinski, E., R. Vinci, and J. Bravman, Effects of barrier layer and annealing on abnormal grain growth in copper thin films. Journal of applied physics, 1994. 76(8): p. 4516-4523. 69. Kirk, E. Cross-sectional transmission electron microscopy of precisely selected regions from semiconductor devices. in Inst. Phys. Conf. Ser. 1989. 70. Volkert, C.A. and A.M. Minor, Focused ion beam microscopy and micromachining. MRS bulletin, 2007. 32(5): p. 389-399. 71. Carter, C.B. and D.B. Williams, Transmission electron microscopy: Diffraction, imaging, and spectrometry. 2016: Springer. 72. Scherrer, P., Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, in Kolloidchemie Ein Lehrbuch. 1912, Springer. p. 387-409. 73. Schwartz, A.J., et al., Electron backscatter diffraction in materials science. Vol. 2. 2009: Springer. 74. Reed, S., AJ Schwartz, M. Kumar and BL Adams (Eds.) Electron Backscatter Diffraction in Materials Science. New York. Kluwer Academic/Plenum Publishers, 2000, xvi+ 339 pp. Price£ 52.00, US $75.00. ISBN 0 306 46487 X. Mineralogical Magazine, 2001. 65(2): p. 319-319. 75. Oliver, W.C. and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research, 1992. 7(6): p. 1564-1583. 76. Sutton, A.P., Interfaces in crystalline materials. Monographs on the Physice and Chemistry of Materials, 1995: p. 414-423. 77. Withers, P., Residual stress and its role in failure. Reports on progress in physics, 2007. 70(12): p. 2211. 78. Ma, C.-H., J.-H. Huang, and H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin solid films, 2002. 418(2): p. 73-78. 79. Haugan, H., et al., Nondestructive evaluation of alternative substrate quality using glancing-incidence x-ray diffraction and Raman spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003. 21(1): p. 110-115. 80. Movchan, B. and A. Demchishin, STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM. Fiz. Metal. Metalloved. 28: 653-60 (Oct 1969). 1969. 81. Thornton, J.A., The microstructure of sputter‐deposited coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4(6): p. 3059-3065. 82. Sriram, V., et al., Determining the stress required for deformation twinning in nanocrystalline and ultrafine-grained copper. Jom, 2008. 60(9): p. 66-70. 83. Pharr, G. and W. Oliver, Nanoindentation of silver-relations between hardness and dislocation structure. Journal of Materials Research, 1989. 4(1): p. 94-101. 84. Gas, P., D. Beke, and J. Bernardino, Grain-boundary diffusion: Analysis of the C kinetic regime. Philosophical magazine letters, 1992. 65(3): p. 133-139. 85. Cahoon, J., Q. Li, and N. Richards, Microstructural and processing factors influencing the formation of annealing twins. Materials science and engineering: a, 2009. 526(1-2): p. 56-61. 86. Thompson, C.V. and R. Carel, Stress and grain growth in thin films. Journal of the Mechanics and Physics of Solids, 1996. 44(5): p. 657-673. 87. Carel, R., C. Thompson, and H. Frost, Computer simulation of strain energy effects vs surface and interface energy effects on grain growth in thin films. Acta materialia, 1996. 44(6): p. 2479-2494. 88. Thompson, C. and R. Carel. Grain growth and texture evolution in thin films. in Materials Science Forum. 1996. Trans Tech Publ. 89. Masteller, M. and C. Bauer, Migration of special< 110> tilt boundaries in aluminum bicrystals. Acta Metallurgica, 1979. 27(3): p. 483-488. 90. Allameh, S., S. Dregia, and P. Shewmon, The role of interfacial energy in crystallite reorientation by twinning. Acta metallurgica et materialia, 1993. 41(10): p. 2887-2896. 91. Inman, M. and H. Tipler, Interfacial energy and composition in metals and alloys. Metallurgical Reviews, 1963. 8(1): p. 105-166. 92. Callister, W.D., Fundamentals of materials science and engineering. Vol. 471660817. 2000: Wiley London. 93. Hoffman, R., Stresses in thin films: The relevance of grain boundaries and impurities. Thin Solid Films, 1976. 34(2): p. 185-190. 94. Brebbia, C.A. and A.A. Mammoli, Computational Methods and Experiments in Materials Characterization III. Vol. 57. 2007: Wit Press.
|