帳號:guest(18.191.218.252)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郝昱筌
作者(外文):Hao, Yu-Chuan
論文名稱(中文):高<111>優選方向奈米雙晶銀薄膜熱穩定性研究
論文名稱(外文):Study on thermal stability of highly <111>-oriented nanotwinned silver thin films
指導教授(中文):歐陽汎怡
指導教授(外文):Ouyang, Fan-Yi
口試委員(中文):杜經寧
廖建能
口試委員(外文):Tu, King-Ning
Liao, Chien-Neng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011501
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:122
中文關鍵詞:奈米雙晶銀薄膜濺鍍熱穩定性微結構變化退火雙晶異常晶粒成長
外文關鍵詞:NanotwinnedSilver thin filmsSputteringThermal stabilityMicrostructural evolutionAnnealing twinsAbnormal grain growth
相關次數:
  • 推薦推薦:0
  • 點閱點閱:426
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究中,在4.6 mTorr的真空度下通過150 ˚C、200 ˚C、300 ˚C、400 ˚C、500 ˚C和600 ˚C退火1小時,研究在具有鈦介層的矽(100)基板上所濺鍍的奈米雙晶銀薄膜之熱穩定性。鈦介層作為銀薄膜和矽基板之間的黏著層以減少晶格不匹配。首先,聚焦離子束(FIB)橫截面影像顯示濺鍍的銀薄膜主要是含有緻密雙晶邊界的柱狀結構,膜厚約1.8微米。此外,在鈦介層附近形成細晶粒過渡區。高解析X光繞射分析顯示,鍍著奈米雙晶銀薄膜具有高<111>優選方向,且(111)織構係數高達3.95 (織構係數等於4表示具有優選取向的晶粒;織構係數等於1表示具有隨機取向的晶粒)。電子背向散射繞射的反極圖(IPFM)顯示,樣品表面的晶粒幾乎為(111)面,這與X光繞射分析相符。(111)織構係數經過150 ˚C退火1小時保持不變。此外,發現部分柱狀晶粒向下成長以通過消耗細晶粒來降低總晶界能。令人著迷的是,薄膜在300 ˚C退火1小時後,包含許多完整的柱狀晶粒而沒有細晶粒,並且在晶粒生長過程中形成了{111}退火雙晶。通過ex situ FIB觀察,較高的退火溫度有利於奈米雙晶的向下成長。基於IPFM的結果表明,在退火溫度為400 ˚C時,表面局部出現了異常晶粒生長,(111)織構係數降低至3.39。然而,Ag (200)在500 ˚C和600 ˚C退火後成為主要的峰,這與FIB橫截面影像的觀察結果一致,高<111>優選方向的雙晶被(200)的粗大晶粒大量消耗。
其次,微結構的演變通常伴隨著薄膜性質的變化,在400 ˚C的退火溫度下,電阻率達到最低的1.79 μΩ-cm。理論上,在較高退火溫度下形成(200)粗晶粒由於電子散射的減少應使得電阻率最小。但是,從二次離子質譜儀(SIMS)的深度分佈圖中可以看出,矽確實在600 ℃的退火溫度下擴散到了銀膜層中,雜質矽對電子的高散射使薄膜電阻上升。
最後,我們將進一步研究退火溫度對薄膜性能(包括硬度和殘餘應力)的影響。另一方面,本文將詳細探討柱狀晶粒的向下生長機制和異常晶粒生長現象。
In this study, thermal stability of sputtered nanotwinned (nt) silver (Ag) thin film on (100) Si substrate with titanium (Ti) interlayer was investigated by annealing at 150 ˚C, 200 ˚C, 300 ˚C, 400 ˚C, 500 ˚C and 600 ˚C for 1 h under a vacuum of 4.6 mTorr, respectively. The Ti interlayer acts as an adhesion layer between the Ag film and Si substrate to reduce lattice mismatch. Firstly, focused ion beam (FIB) cross-sectional image showed that the sputtered nt-Ag thin film was mainly the columnar structures containing the dense twin boundaries. The film thickness was about 1.8 µm. Furthermore, the fine-grained transition zone was formed near the Ti interface. High-resolution X-ray diffraction (HRXRD) pattern showed the presence of highly <111>-preferred orientation in as-deposited nt-Ag thin film, and the (111) texture coefficient (TC) reached 3.95 (TC = 4 represents preferred-oriented crystallites; TC = 1 represents random-oriented crystallites). Inverse pole figure map (IPFM) of electron backscatter diffraction (EBSD) showed that the grains on the surface were almost (111) planes, which were consistent with the HRXRD analysis. The (111) TC remained unchanged after annealing at 150 ˚C for 1 h. Furthermore, it was found that partial columnar grains grew downward to reduce the total grain boundary energy by consuming the fine grains. Fascinatingly, the film contains many complete columnar grains without fine grains after annealing at 300 ℃ for 1 h with the formation of annealing {111} twins during grain growth. Higher the annealing temperature facilitates more downward growth of nanotwins by ex situ FIB observation. Based on IPFM results showing abnormal grain growth occurred on the local surface at annealing temperature of 400 ˚C, and (111) TC decreased to 3.39. However, Ag (200) becomes the dominant peak at 500 ˚C and 600 ˚C, which is consistent with cross-sectional FIB observation. The highly <111>-oriented twins are greatly consumed by the coarse-(200)-oriented grains.
Secondly, microstructural evolution is usually accompanied by changes in properties of thin film. At annealing temperature of 400 ˚C, the resistivity reached the lowest 1.79 μΩ-cm. Theoretically, the formation of (200) coarse grains at higher temperatures should minimize the resistivity due to the reduction of electron scattering. However, it can be seen from the secondary ion mass spectrometer (SIMS) depth profile that silicon has indeed diffused into the Ag film layer at annealing temperature of 600 ˚C, which the impurities of Si with high resistivity to electron scattering.
Finally, we will further study the effect of annealing temperatures on the properties of films, including hardness and residual stress. On the other hand, the downward growth mechanism of columnar grains and the phenomenon of abnormal grain growth will be discussed in detail in this thesis.
Abstract i
摘要 iii
致謝 v
Content vii
List of Figures ix
List of Tables xvi
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Advantages of forming nanoscale coherent Σ3 {111} twin boundaries 5
2.1.1 Ultrahigh Strength and excellent ductile 5
2.1.2 Extraordinary electrical conductivity 9
2.1.3 Stable in hardness during creep test 12
2.1.4 Radiation-tolerant 14
2.1.5 Electromigration resistance 19
2.1.6 Superior thermal stability 21
2.2 Methods for depositing nanotwinned film 23
2.2.1 Deformation twins and growth twins in Metals 26
2.2.2 Stacking Fault Energy 26
2.3 Formation of annealing {111} nanotwins in nanotwinned Ag films 31
2.4 Abnormal grain growth in nanotwinned Ag films 37
Chapter 3 Experimental Details 40
3.1 Coating process 40
3.2 Characterization Methods 42
3.2.1 Thermal Field Emission Scanning Electron Microscope (HRFEG-SEM) 42
3.2.2 Dual-beam Focused Ion Beam system (FIB/SEM) 42
3.2.3 X-ray Diffraction (XRD) 43
3.2.4 Electron Backscatter Diffraction (EBSD) 45
3.2.5 Time-of-Flight Secondary Ion Mass Spectrometer (ToF-SIMS) 46
3.3 Properties Measurements 52
3.3.1 Electrical resistivity 52
3.3.2 Hardness 53
3.3.3 Residual stress 55
Chapter 4 Results 61
4.1 Structural characteristics of as-deposited nt-Ag thin film by sputtering 61
4.2 Characterization analysis for the nt-Ag thin films during annealing process 69
4.2.1 Microstructural evolution of the nt-Ag thin films at different annealing temperatures 69
4.2.2 The grain orientation distribution and texture evolution on the nt-Ag thin films surface at different annealing temperatures 77
4.3 Annealing effect on the physical properties of nt-Ag thin films 81
4.3.1 Changing in resistivity of nt-Ag thin film during annealing 81
4.3.2 Changing in hardness and Young’s modulus of nt-Ag thin film during annealing 83
4.3.3 Changing in residual stress of nt-Ag thin film during annealing 88
Chapter 5 Discussion 93
5.1 Grain growth of nanotwinned silver thin films during the annealing process 93
5.1.1 The formation of annealing {111} twins during the downward growth of nt-Ag columnar grains below 400 ℃ annealing 93
5.1.2 Abnormal grain growth above 400 ℃ annealing 101
5.2 Effect of microstructural evolution on properties of nanotwinned Ag thin films during annealing 106
5.2.1 Electrical resistivity 106
5.2.2 Hardness 109
5.2.3 Residual stress 112
Chapter 6 Conclusions 114
Reference 116

1. Liu, C.-M., et al., Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Scientific reports, 2015. 5: p. 9734.
2. Lau, J.H. TSV manufacturing yield and hidden costs for 3D IC integration. in 2010 Proceedings 60th electronic components and technology conference (ECTC). 2010. IEEE.
3. Alves, L.F., et al. SIC power devices in power electronics: An overview. in 2017 Brazilian Power Electronics Conference (COBEP). 2017. IEEE.
4. Zhang, X. and A. Misra, Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scripta Materialia, 2012. 66(11): p. 860-865.
5. Zhao, Y., et al., Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture. Journal of Materials Research, 2012. 27(24): p. 3049.
6. Hsiao, H.-Y., et al., Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper. Science, 2012. 336(6084): p. 1007-1010.
7. Beyerlein, I.J., X. Zhang, and A. Misra, Growth twins and deformation twins in metals. Annual Review of Materials Research, 2014. 44: p. 329-363.
8. Lu, L., et al., Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-426.
9. Zhang, X., et al., High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Applied Physics Letters, 2006. 88(17): p. 173116.
10. Hodge, A., Y. Wang, and T. Barbee Jr, Mechanical deformation of high-purity sputter-deposited nano-twinned copper. Scripta materialia, 2008. 59(2): p. 163-166.
11. Lu, K., L. Lu, and S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale. science, 2009. 324(5925): p. 349-352.
12. Kulkarni, Y., R.J. Asaro, and D. Farkas, Are nanotwinned structures in fcc metals optimal for strength, ductility and grain stability? Scripta Materialia, 2009. 60(7): p. 532-535.
13. Dao, M., et al., Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta materialia, 2006. 54(20): p. 5421-5432.
14. Brandes, E.A. and G. Brook, Smithells metals reference book. 2013: Elsevier.
15. Chen, X., L. Lu, and K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. Journal of applied physics, 2007. 102(8): p. 083708.
16. Bezares, J., et al., Indentation of nanotwinned fcc metals: Implications for nanotwin stability. Acta materialia, 2012. 60(11): p. 4623-4635.
17. Liao, X., et al., High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Applied Physics Letters, 2006. 88(2): p. 021909.
18. Kiritani, M., Story of stacking fault tetrahedra. Materials chemistry and physics, 1997. 50(2): p. 133-138.
19. Zinkle, S., L. Seitzman, and W. Wolfer, I. Energy calculations for pure metals. Philosophical Magazine A, 1987. 55(1): p. 111-125.
20. Singh, B.N., et al., Evolution of stacking fault tetrahedra and its role in defect accumulation under cascade damage conditions. Journal of nuclear materials, 2004. 328(2-3): p. 77-87.
21. Yu, K., et al., Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. Nature communications, 2013. 4(1): p. 1-7.
22. Li, J., et al., In situ study of defect migration kinetics and self-healing of twin boundaries in heavy ion irradiated nanotwinned metals. Nano letters, 2015. 15(5): p. 2922-2927.
23. Chen, K.-C., et al., Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-1069.
24. Bufford, D., H. Wang, and X. Zhang, Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films. Journal of Materials Research, 2013. 28(13): p. 1729.
25. Xu, D., et al., Nanotwin formation and its physical properties and effect on reliability of copper interconnects. Microelectronic Engineering, 2008. 85(10): p. 2155-2158.
26. Saldana, C., et al., Stabilizing nanostructured materials by coherent nanotwins and their grain boundary triple junction drag. Applied Physics Letters, 2009. 94(2): p. 021910.
27. Anderoglu, O., et al., Thermal stability of sputtered Cu films with nanoscale growth twins. Journal of Applied Physics, 2008. 103(9): p. 094322.
28. Upmanyu, M., et al., Molecular dynamics simulation of triple junction migration. Acta materialia, 2002. 50(6): p. 1405-1420.
29. Czubayko, U., et al., Influence of triple junctions on grain boundary motion. Acta materialia, 1998. 46(16): p. 5863-5871.
30. Chan, T.-C., Y.-L. Chueh, and C.-N. Liao, Manipulating the crystallographic texture of nanotwinned Cu films by electrodeposition. Crystal growth & design, 2011. 11(11): p. 4970-4974.
31. Bufford, D., H. Wang, and X. Zhang, High strength, epitaxial nanotwinned Ag films. Acta Materialia, 2011. 59(1): p. 93-101.
32. Ouyang, F.-Y., K.-H. Yang, and L.-P. Chang, Effect of film thickness and Ti interlayer on structure and properties of Nanotwinned Cu thin films. Surface and Coatings Technology, 2018. 350: p. 848-856.
33. Xu, L., et al., Structure and migration of (112) step on (111) twin boundaries in nanocrystalline copper. Journal of Applied Physics, 2008. 104(11): p. 113717.
34. Liu, T.-C., et al., Fabrication and characterization of (111)-oriented and nanotwinned Cu by DC electrodeposition. Crystal Growth & Design, 2012. 12(10): p. 5012-5016.
35. Kelly, P.J. and R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
36. Huang, Y.-S., et al., Grain growth in electroplated (1 1 1)-oriented nanotwinned Cu. Scripta Materialia, 2014. 89: p. 5-8.
37. Liu, M., et al., Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nature communications, 2013. 4(1): p. 1-8.
38. Christian, J.W. and S. Mahajan, Deformation twinning. Progress in materials science, 1995. 39(1-2): p. 1-157.
39. Wu, X., et al., New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Physical review letters, 2008. 100(9): p. 095701.
40. Zhu, Y.T. and T.G. Langdon, Influence of grain size on deformation mechanisms: an extension to nanocrystalline materials. Materials Science and Engineering: A, 2005. 409(1-2): p. 234-242.
41. Suzuki, H. and C. Barrett, Deformation twinning in silver-gold alloys. Acta metallurgica, 1958. 6(3): p. 156-165.
42. Meyers, M., O. Vöhringer, and V. Lubarda, The onset of twinning in metals: a constitutive description. Acta materialia, 2001. 49(19): p. 4025-4039.
43. Zhang, X., et al., Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Materialia, 2004. 52(4): p. 995-1002.
44. Carpenter, H.C.H. and S. Tamura, The formation of twinned metallic crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1926. 113(763): p. 161-182.
45. Fullman, R. and J. Fisher, Formation of annealing twins during grain growth. Journal of Applied Physics, 1951. 22(11): p. 1350-1355.
46. Gleiter, H., The formation of annealing twins. Acta metallurgica, 1969. 17(12): p. 1421-1428.
47. Meyers, M.A. and L.E. Murr, A model for the formation of annealing twins in FCC metals and alloys. Acta metallurgica, 1978. 26(6): p. 951-962.
48. Goodhew, P., Annealing twin formation by boundary dissociation. Metal Science, 1979. 13(3-4): p. 108-112.
49. Burgers, W., J. Meijs, and T. Tiedema, Frequency of annealing twins in copper crystals grown by recrystallization. Acta Metallurgica, 1953. 1(1): p. 75-78.
50. Nielsen, J.P., The origin of annealing twins. Acta Metallurgica, 1967. 15(6): p. 1083-1085.
51. Kurzydłowski, K., On the formation of twin grains as a result of grain encounters during the process of recrystallization and grain growth. Scripta metallurgica et materialia, 1991. 25(5): p. 1099-1102.
52. Dash, S. and N. Brown, An investigation of the origin and growth of annealing twins. Acta Metallurgica, 1963. 11(9): p. 1067-1075.
53. Eshelby, J., F. Frank, and F. Nabarro, XLI. The equilibrium of linear arrays of dislocations. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1951. 42(327): p. 351-364.
54. Dieter, G.E. and D.J. Bacon, Mechanical metallurgy. Vol. 3. 1986: McGraw-hill New York.
55. Li, Q., J. Cahoon, and N. Richards, On the calculation of annealing twin density. Scripta materialia, 2006. 55(12): p. 1155-1158.
56. Keller, R., S. Baker, and E. Arzt, Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation. Journal of Materials Research, 1998. 13(5): p. 1307-1317.
57. Vaidya, S. and A. Sinha, Effect of texture and grain structure on electromigration in Al-0.5% Cu thin films. Thin Solid Films, 1981. 75(3): p. 253-259.
58. Hommel, M. and O. Kraft, Deformation behavior of thin copper films on deformable substrates. Acta Materialia, 2001. 49(19): p. 3935-3947.
59. Vinci, R., E. Zielinski, and J. Bravman, Thermal strain and stress in copper thin films. Thin solid films, 1995. 262(1-2): p. 142-153.
60. Herbstein, F. and B.L. Averbach, The structure of lithium-magnesium solid solutions—II: Measurements of diffuse X-ray scattering. Acta Metallurgica, 1956. 4(4): p. 414-420.
61. Frost, H., C. Thompson, and D. Walton, Simulation of thin film grain structures—I. Grain growth stagnation. Acta Metallurgica et Materialia, 1990. 38(8): p. 1455-1462.
62. Reed-Hill, R.E., R. Abbaschian, and R. Abbaschian, Physical metallurgy principles. Vol. 17. 1973: Van Nostrand New York.
63. Frost, H., C. Thompson, and D. Walton, Simulation of thin film grain structures—II. Abnormal grain growth. Acta metallurgica et materialia, 1992. 40(4): p. 779-793.
64. Takewaki, T., et al., Formation of giant-grain copper interconnects by a low-energy ion bombardment process for high-speed ULSIs. Materials chemistry and physics, 1995. 41(3): p. 182-191.
65. Greiser, J., P. Müllner, and E. Arzt, Abnormal growth of “giant” grains in silver thin films. Acta materialia, 2001. 49(6): p. 1041-1050.
66. Park, N.-J., et al., Effect of film thickness on the evolution of annealing texture in sputtered copper films. Journal of electronic materials, 2005. 34(12): p. 1500-1508.
67. Sonnweber-Ribic, P., et al., Texture transition in Cu thin films: Electron backscatter diffraction vs. X-ray diffraction. Acta materialia, 2006. 54(15): p. 3863-3870.
68. Zielinski, E., R. Vinci, and J. Bravman, Effects of barrier layer and annealing on abnormal grain growth in copper thin films. Journal of applied physics, 1994. 76(8): p. 4516-4523.
69. Kirk, E. Cross-sectional transmission electron microscopy of precisely selected regions from semiconductor devices. in Inst. Phys. Conf. Ser. 1989.
70. Volkert, C.A. and A.M. Minor, Focused ion beam microscopy and micromachining. MRS bulletin, 2007. 32(5): p. 389-399.
71. Carter, C.B. and D.B. Williams, Transmission electron microscopy: Diffraction, imaging, and spectrometry. 2016: Springer.
72. Scherrer, P., Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, in Kolloidchemie Ein Lehrbuch. 1912, Springer. p. 387-409.
73. Schwartz, A.J., et al., Electron backscatter diffraction in materials science. Vol. 2. 2009: Springer.
74. Reed, S., AJ Schwartz, M. Kumar and BL Adams (Eds.) Electron Backscatter Diffraction in Materials Science. New York. Kluwer Academic/Plenum Publishers, 2000, xvi+ 339 pp. Price£ 52.00, US $75.00. ISBN 0 306 46487 X. Mineralogical Magazine, 2001. 65(2): p. 319-319.
75. Oliver, W.C. and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research, 1992. 7(6): p. 1564-1583.
76. Sutton, A.P., Interfaces in crystalline materials. Monographs on the Physice and Chemistry of Materials, 1995: p. 414-423.
77. Withers, P., Residual stress and its role in failure. Reports on progress in physics, 2007. 70(12): p. 2211.
78. Ma, C.-H., J.-H. Huang, and H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin solid films, 2002. 418(2): p. 73-78.
79. Haugan, H., et al., Nondestructive evaluation of alternative substrate quality using glancing-incidence x-ray diffraction and Raman spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003. 21(1): p. 110-115.
80. Movchan, B. and A. Demchishin, STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM. Fiz. Metal. Metalloved. 28: 653-60 (Oct 1969). 1969.
81. Thornton, J.A., The microstructure of sputter‐deposited coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4(6): p. 3059-3065.
82. Sriram, V., et al., Determining the stress required for deformation twinning in nanocrystalline and ultrafine-grained copper. Jom, 2008. 60(9): p. 66-70.
83. Pharr, G. and W. Oliver, Nanoindentation of silver-relations between hardness and dislocation structure. Journal of Materials Research, 1989. 4(1): p. 94-101.
84. Gas, P., D. Beke, and J. Bernardino, Grain-boundary diffusion: Analysis of the C kinetic regime. Philosophical magazine letters, 1992. 65(3): p. 133-139.
85. Cahoon, J., Q. Li, and N. Richards, Microstructural and processing factors influencing the formation of annealing twins. Materials science and engineering: a, 2009. 526(1-2): p. 56-61.
86. Thompson, C.V. and R. Carel, Stress and grain growth in thin films. Journal of the Mechanics and Physics of Solids, 1996. 44(5): p. 657-673.
87. Carel, R., C. Thompson, and H. Frost, Computer simulation of strain energy effects vs surface and interface energy effects on grain growth in thin films. Acta materialia, 1996. 44(6): p. 2479-2494.
88. Thompson, C. and R. Carel. Grain growth and texture evolution in thin films. in Materials Science Forum. 1996. Trans Tech Publ.
89. Masteller, M. and C. Bauer, Migration of special< 110> tilt boundaries in aluminum bicrystals. Acta Metallurgica, 1979. 27(3): p. 483-488.
90. Allameh, S., S. Dregia, and P. Shewmon, The role of interfacial energy in crystallite reorientation by twinning. Acta metallurgica et materialia, 1993. 41(10): p. 2887-2896.
91. Inman, M. and H. Tipler, Interfacial energy and composition in metals and alloys. Metallurgical Reviews, 1963. 8(1): p. 105-166.
92. Callister, W.D., Fundamentals of materials science and engineering. Vol. 471660817. 2000: Wiley London.
93. Hoffman, R., Stresses in thin films: The relevance of grain boundaries and impurities. Thin Solid Films, 1976. 34(2): p. 185-190.
94. Brebbia, C.A. and A.A. Mammoli, Computational Methods and Experiments in Materials Characterization III. Vol. 57. 2007: Wit Press.

(此全文20250901後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *