|
Reference (1) Pérez-Bailón, J.; Márquez, A.; Calvo, B.; Medrano, N.; Martínez, P. A.; Sanz-Pascual, M. T. A Fully-Integrated CMOS LDO Regulator for Battery-Operated On-Chip Measurement Systems. Procedia Eng. 2016, 168, 1655–1658. https://doi.org/10.1016/J.PROENG.2016.11.483. (2) Ameziane, H.; Hassan, Q.; Kamal, Z.; Mohcine, Z. An Enhancement Transient Response of Capless LDO with Improved Dynamic Biasing Control for SoC Applications. Proc. Int. Conf. Microelectron. ICM 2016, 2016-March, 122–125. https://doi.org/10.1109/ICM.2015.7438003. (3) Lau, S. K.; Mok, P. K. T.; Leung, K. N. A Low-Dropout Regulator for SoC with Q-Reduction. IEEE J. Solid-State Circuits 2007, 42 (3), 658–664. https://doi.org/10.1109/JSSC.2006.891496. (4) Han, X.; Burger, T.; Huang, Q. An Output-Capacitor-Free Adaptively Biased LDO Regulator with Robust Frequency Compensation in 0.13μm CMOS for SoC Application. Proc. - IEEE Int. Symp. Circuits Syst. 2016, 2016-July, 2699–2702. https://doi.org/10.1109/ISCAS.2016.7539150. (5) Milliken, R. J.; Silva-Martínez, J.; Sánchez-Sinencio, E. Full On-Chip CMOS Low-Dropout Voltage Regulator. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54 (9), 1879–1890. https://doi.org/10.1109/TCSI.2007.902615. (6) Amayreh, M.; Leicht, J.; Manoli, Y. A 200ns Settling Time Fully Integrated Low Power LDO Regulator with Comparators as Transient Enhancement. Proc. - IEEE Int. Symp. Circuits Syst. 2016, 2016-July, 494–497. https://doi.org/10.1109/ISCAS.2016.7527285. (7) Rincon-Mora, G. A.; Allen, P. E. A Low-Voltage, Low Quiescent Current, Low Drop-out Regulator. IEEE J. Solid-State Circuits 1998, 33 (1), 36–43. https://doi.org/10.1109/4.654935. (8) Park, C. J.; Onabajo, M.; Silva-Martinez, J. External Capacitor-Less Low Drop-out Regulator with 25 DB Superior Power Supply Rejection in the 0.4-4 MHz Range. IEEE J. Solid-State Circuits 2014, 49 (2), 486–501. https://doi.org/10.1109/JSSC.2013.2289897. (9) Yang, F.; Mok, P. K. T. Fast-Transient Asynchronous Digital LDO with Load Regulation Enhancement by Soft Multi-Step Switching and Adaptive Timing Techniques in 65-Nm CMOS. Proc. Cust. Integr. Circuits Conf. 2015, 2015-November. https://doi.org/10.1109/CICC.2015.7338389. (10) Fan, X.; Mishra, C.; Sánchez-Sinencio, E. Single Miller Capacitor Frequency Compensation Technique for Low-Power Multistage Amplifiers. IEEE J. Solid-State Circuits 2005, 40 (3), 584–592. https://doi.org/10.1109/JSSC.2005.843602. (11) Shirmohammadli, V.; Saberkari, A.; Martinez-Garcia, H.; Alarcon-Cot, E. An Output-Capacitorless FVF-Based Low-Dropout Regulator for Power Management Applications. IEEE Int. Conf. Ind. Informatics 2016, 0, 258–263. https://doi.org/10.1109/INDIN.2016.7819169. (12) Chen, K.-H. Power Management Techniques for Integrated Circuit Design. 2016, 548. (13) Keikhosravy, K.; Mirabbasi, S. A 0.13-μ m CMOS Low-Power Capacitor-Less LDO Regulator Using Bulk-Modulation Technique. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61 (11), 3105–3114. https://doi.org/10.1109/TCSI.2014.2334831. (14) Leung, K. N.; Mok, P. K. T. A Capacitor-Free CMOS Low-Dropout Regulator With Damping-Factor-Control Frequency Compensation. IEEE J. Solid-State Circuits 2003, 38 (10), 1691–1702. https://doi.org/10.1109/JSSC.2003.817256. (15) Adorni, N.; Stanzione, S.; Boni, A. A 10-MA LDO with 16-NA IQ and Operating from 800-MV Supply. IEEE J. Solid-State Circuits 2020, 55 (2), 404–413. https://doi.org/10.1109/JSSC.2019.2948820. (16) Mandal, D.; Desai, C.; Bakkaloglu, B.; Kiaei, S. Adaptively Biased Output Cap-Less NMOS LDO with 19 Ns Settling Time. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66 (2), 167–171. https://doi.org/10.1109/TCSII.2018.2842642. (17) Chen, C. M.; Hung, C. C. A Fast Self-Reacting Capacitor-Less Low-Dropout Regulator. Eur. Solid-State Circuits Conf. 2011, 375–378. https://doi.org/10.1109/ESSCIRC.2011.6044985. (18) Man, T. Y.; Mok, P. K. T.; Chan, M. A High Slew-Rate Push-Pull Output Amplifier for Low-Quiescent Current Low-Dropout Regulators with Transient-Response Improvement. IEEE Trans. Circuits Syst. II Express Briefs 2007, 54 (9), 755–759. https://doi.org/10.1109/TCSII.2007.900347. (19) Heng, S.; Pham, C. K. A Low-Power High-PSRR Low-Dropout Regulator with Bulk-Gate Controlled Circuit. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57 (4), 245–249. https://doi.org/10.1109/TCSII.2010.2043390. (20) Chiesa, M.; Cittadini, L.; Di Battista, G.; Vanbever, L.; Vissicchio, S. Using Routers to Build Logic Circuits: How Powerful Is BGP? (21) What is BGP and How Does Border Gateway Protocol Work? https://www.techtarget.com/searchnetworking/definition/BGP-Border-Gateway-Protocol (accessed Dec 29, 2021). (22) Devices, T. E.; Corporation, S. Basics of Low-Dropout ( LDO ) Regulator ICs. 2021, 1–41. (23) Selecting an Linear Regulator (LDO) | Richtek Technology https://www.richtek.com/selection-guide/en/selection-ldo-criteria.html (accessed Dec 29, 2021). (24) Understand LDO Concepts to Achieve Optimal Designs | Analog Devices https://www.analog.com/en/analog-dialogue/articles/understand-ldo-concepts.html (accessed Dec 29, 2021). (25) Lavalle-Aviles, F.; Torres, J.; Sanchez-Sinencio, E. A High Power Supply Rejection and Fast Settling Time Capacitor-Less LDO. IEEE Trans. Power Electron. 2019, 34 (1), 474–484. https://doi.org/10.1109/TPEL.2018.2826922. (26) Li, G.; Qian, H.; Guo, J.; Mo, B.; Lu, Y.; Chen, D. Dual Active-Feedback Frequency Compensation for Output-Capacitorless LDO with Transient and Stability Enhancement in 65-Nm CMOS. IEEE Trans. Power Electron. 2020, 35 (1), 415–429. https://doi.org/10.1109/TPEL.2019.2910557. (27) Guo, X.; Ren, H. P. Nonlinear Feedback Control of Compound Active-Clamp Soft-Switching Three-Phase PFC Converter Base on Load Observer. 2014 IEEE Energy Convers. Congr. Expo. ECCE 2014 2014, 1153–1158. https://doi.org/10.1109/ECCE.2014.6953530. (28) Introduction to Low Dropout (LDO) Linear Voltage Regulators https://www.design-reuse.com/articles/42191/low-dropout-ldo-linear-voltage-regulators.html (accessed Dec 30, 2021). (29) Amer, A.; Sánchez-Sinencio, E. A 140mA 90nm CMOS Low Drop-out Regulator with -56dB Power Supply Rejection at 10MHz. (30) Shende, M. LDO Basics. (31) Kerklaan, L. P. T.; Huijsing, J. H. A 100-MHz 100-DB Operational Amplifier with Multipath Nested Miller Compensation Structure. IEEE J. Solid-State Circuits 1992, 27 (12), 1709–1717. https://doi.org/10.1109/4.173096. (32) Or, P. Y.; Leung, K. N. An Output-Capacitorless Low-Dropout Regulator with Direct Voltage-Spike Detection. IEEE J. Solid-State Circuits 2010, 45 (2), 458–466. https://doi.org/10.1109/JSSC.2009.2034805. (33) Manda, M.; Pakala, S. H.; Furth, P. M. A Multi-Loop Low-Dropout FVF Voltage Regulator with Enhanced Load Regulation. Midwest Symp. Circuits Syst. 2017, 2017-August, 9–12. https://doi.org/10.1109/MWSCAS.2017.8052847. (34) Hong, S. W.; Cho, G. H. High-Gain Wide-Bandwidth Capacitor-Less Low-Dropout Regulator (LDO) for Mobile Applications Utilizing Frequency Response of Multiple Feedback Loops. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63 (1), 46–57. https://doi.org/10.1109/TCSI.2015.2512702. (35) Amaya, A.; Castro, F.; Roa, E. Improving Low-Dropout Regulator Frequency Stability by Exploiting the Equivalent Series Resistor and Featuring an Adaptive Biasing Strategy. Proc. - IEEE Int. Symp. Circuits Syst. 2019, 2019-May. https://doi.org/10.1109/ISCAS.2019.8702718. (36) Fan, X.; Mishra, C.; Sánchez-Sinencio, E. Single Miller Capacitor Compensated Multistage Amplifiers for Large Capacitive Load Applications. Proc. - IEEE Int. Symp. Circuits Syst. 2004, 1. https://doi.org/10.1109/ISCAS.2004.1328239.
|