帳號:guest(3.15.144.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):歐維亞
作者(外文):Odugoudar Vidya
論文名稱(中文):低壓差穩壓器含帶差參考電路之電路設計
論文名稱(外文):DESIGN OF LOW DROPOUT REGULATOR WITH BANDGAP REFERENCE CIRCUIT
指導教授(中文):盧志文
指導教授(外文):Lu, Chi-Wen
口試委員(中文):陳宏偉
尹炳業
口試委員(外文):Chen, Hung-Wei
Yin, Ping-Yeh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:107011421
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:52
中文關鍵詞:低压差稳压器高带宽带隙参考参考跟踪反馈电容跟踪误差
外文關鍵詞:low dropout regulatorHigh BandwidthBand Gap ReferenceReference Trackingfeedback capacitortracking error
相關次數:
  • 推薦推薦:0
  • 點閱點閱:259
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電池的操作在可攜式電子產品的應用上有大量的改善及增強,因此電源管理系統成為一項值得深思的重要問題。電源管理系統是為了提供能量給予可攜式裝置,如智慧型手機、筆記型電腦、無線傳輸網路等,提供其穩定的電源供應。近幾年來有大量的需求於高性能的調節器例如高解析度、高效能轉換、高電源供應抵制都成為主要特性。多級的低壓差調節器(Low dropout regulator, LDO)可以達到此效果。LDO常被使用,因為有低消耗功率、快速響應、簡易、低成本、小的晶片面積和低雜訊的好處。在這樣的條件下,低壓差調節器相較於其他傳統的線性調節器成為了一個受人喜歡的選擇在低電壓操作的晶片電源系統的應用上。LDO是新興於更改善的效率,讓他們是何在系統晶片(system on chip, SOC)上的應用。這樣的LDO需要提供不變且不受雜訊影響且較好的暫態響應,例如負載調節率、電源電壓調節率、穩定分析和PSR。
類比積體電路設計以獲得明確定義的參考電壓和電流值已成為電路中的主要問題,因此可以透過Bandgap參考電路來滿足晶片上的設計。本論文的重點在於性能參數的理論理解以及Bandgap參考電路的設計。Bandgap參考電路發揮著主導作用,因為它提供不受溫度變化、雜訊、功耗和電源電壓波動影響的恆定直流電壓。這種Bandgap參考電路由於其尺寸較小且功耗較低而成為首選。
本篇論文使用0.18um CMOS製程實現LDO用於驅動晶片中的低電壓。主要目標是基於Bandgap電路含兩級折疊式疊接放大器及啟動電路用於啟動電源訊號。當輸入電壓3.3 V時可提供高精確的2.69 V輸出電壓,負載電流小於100mA且只有20uA的靜態電流和好的PSR。負載調節率、電源電壓調節率、穩定分析和PSR都很好在(-40, 25, 50, 125)的溫度區間。此處使用0.7V截止電壓製程及3.3V輸入供應電壓。電路設計目標為含Bandgap電路的LDO,設計和模擬使用EDA軟體HSPICE,布局則使用Laker工具。
關鍵字: 低壓差調節器(LDO)、高頻寬、參考電壓追蹤、回授電容、追蹤錯誤
The massive improvement and enhancement of battery-operated portable electronic applications, the power management has become more important issue to be considered. Power management is nothing but conditioning and supplying the energy for portable devices such as smart phones, laptops, wireless sensor networks which operate on stable power. In the recent years, there is a huge demand for high performance regulator such as high resolution, efficiency and high power supply rejection is growing as a major feature. The multi-stage low dropout regulator (LDO) can achieve this target. The LDO are widely used because of their small power consumption, fast response, simplicity, low cost of implementation, small chip area or low board space, and low noise. Nowadays, low dropout regulators have more demand and importance is given due to their the less power consumption as compared with any other regulators. The LDO regulators are emerging with more improved efficiency, which makes them suitable for system on chip (SoC) applications. These LDO must supply a constant, noise-independent, better transient response, like load regulation, line regulation, stability analysis and PSR depending on the particular application.
An analog integrated circuit designing to obtain well defined values of reference voltages and currents has become a main issue in the circuits. This can be accomplished on-chip by using band gap reference circuits. The importance in this thesis lies on theoretical understanding of the performance parameters as well as the design of band gap reference circuit. This reference circuit is playing a major role as it has the capability to contribute a stable DC voltage which is immune to temperature variations, output noise, and power supply voltage fluctuations. This band gap reference circuit is preferred due to its smaller size and consume less power.
This paper work presents a 0.18um CMOS Low Dropout Voltage Regulator (LDO) to attain developments in design of low power portable systems . The proposed structure of LDO is mainly based on band gap reference circuit (BGR) with two stage folded cascade opamp and start-up circuit arrangement using POR (power on reset) signal. This provides a high precision of 2.69 V output voltage for the input supply voltage of 3.3V for load current of <100mA with only 20uA quiescent current and good PSR. Line, load regulation, transient and stability analysis are better over a (-40, 25, 50, 125) temperature span. Here we have used 0.7V threshold process with 3.3V input supply voltage. The circuit design of the proposed low dropout regulator with band gap reference scheme are designed and analyzed with the electronic design automation tool HSPICE, and Laker tool is used to generate the layout structure.
TABLE OF CONTENTS
PAGE
No.
ABSTRACT II-V
ACKNOWLEDGEMENTS VI-VII
TABLE OF CONTENTS VIII-IX
LIST OF FIGURES X-XI
LIST OF TABLES XII
LIST OF ABBREVIATIONS XIII
OBJECTIVES 1
1. CHAPTER 1: INTRODUCTION
1.1. Background 2-6
1.2. Basic DC parameters of AN LDO 6-7
1.3. Basic AC parameters of AN LDO 7-8
1.4. Applications of low dropout regulator 8-9
1.5. Design motivation 9-10
2. CHAPTER 2: The basic concept of LDO regulator
2.1. Low voltage regulators 11
2.1.1. Error amplifier (EA) 12
2.1.2. Pass device 13
2.2. Working principle of LDO regulators 14
2.3. Performance parameters 14
2.3.1. Steady-state parameters 14-18
2.3.2. Dynamic parameters 18-19
3. CHAPTER 3: Block diagram explanation/circuit implementation
3.1. (A) Opampcircuit for bandgap reference (BGR) 20-23
3.1. (B) Bandgap reference (BGR) circuit 23-31
3.2. (A) Regulator Opamp circuit 32-33
3.2. (B) Low dropout regulator (LDO) circuit 33-34
4. CHAPTER 4: Simulation results 35
4.1. Simulation results with proposed mechanism and without the proposed mechanism 36
4.1.1. Line regulation 36
4.1.2. Load regulation 36
4.1.3. Stability analysis 37
4.1.4. Transient analysis 38
4.1.5. DC bias point check 38
4.1.6. Settling time 40-41
4.1.7. PSR analysis 41
4.1.8. Power down analysis 42
5. CHAPTER 5: Layout design 43
5.1. Layout design for opamp circuit for bandgap reference (BGR) 43
5.2. Layout design for bandgap reference (BGR) circuit 44
5.3. Layout design for regulator opamp circuit 45
5.4. Layout design for low dropout regulator circuit 45
6. CHAPTER 6: Conclusion and future work 46
References 47-52





Reference
(1) Pérez-Bailón, J.; Márquez, A.; Calvo, B.; Medrano, N.; Martínez, P. A.; Sanz-Pascual, M. T. A Fully-Integrated CMOS LDO Regulator for Battery-Operated On-Chip Measurement Systems. Procedia Eng. 2016, 168, 1655–1658. https://doi.org/10.1016/J.PROENG.2016.11.483.
(2) Ameziane, H.; Hassan, Q.; Kamal, Z.; Mohcine, Z. An Enhancement Transient Response of Capless LDO with Improved Dynamic Biasing Control for SoC Applications. Proc. Int. Conf. Microelectron. ICM 2016, 2016-March, 122–125. https://doi.org/10.1109/ICM.2015.7438003.
(3) Lau, S. K.; Mok, P. K. T.; Leung, K. N. A Low-Dropout Regulator for SoC with Q-Reduction. IEEE J. Solid-State Circuits 2007, 42 (3), 658–664. https://doi.org/10.1109/JSSC.2006.891496.
(4) Han, X.; Burger, T.; Huang, Q. An Output-Capacitor-Free Adaptively Biased LDO Regulator with Robust Frequency Compensation in 0.13μm CMOS for SoC Application. Proc. - IEEE Int. Symp. Circuits Syst. 2016, 2016-July, 2699–2702. https://doi.org/10.1109/ISCAS.2016.7539150.
(5) Milliken, R. J.; Silva-Martínez, J.; Sánchez-Sinencio, E. Full On-Chip CMOS Low-Dropout Voltage Regulator. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54 (9), 1879–1890. https://doi.org/10.1109/TCSI.2007.902615.
(6) Amayreh, M.; Leicht, J.; Manoli, Y. A 200ns Settling Time Fully Integrated Low Power LDO Regulator with Comparators as Transient Enhancement. Proc. - IEEE Int. Symp. Circuits Syst. 2016, 2016-July, 494–497. https://doi.org/10.1109/ISCAS.2016.7527285.
(7) Rincon-Mora, G. A.; Allen, P. E. A Low-Voltage, Low Quiescent Current, Low Drop-out Regulator. IEEE J. Solid-State Circuits 1998, 33 (1), 36–43. https://doi.org/10.1109/4.654935.
(8) Park, C. J.; Onabajo, M.; Silva-Martinez, J. External Capacitor-Less Low Drop-out Regulator with 25 DB Superior Power Supply Rejection in the 0.4-4 MHz Range. IEEE J. Solid-State Circuits 2014, 49 (2), 486–501. https://doi.org/10.1109/JSSC.2013.2289897.
(9) Yang, F.; Mok, P. K. T. Fast-Transient Asynchronous Digital LDO with Load Regulation Enhancement by Soft Multi-Step Switching and Adaptive Timing Techniques in 65-Nm CMOS. Proc. Cust. Integr. Circuits Conf. 2015, 2015-November. https://doi.org/10.1109/CICC.2015.7338389.
(10) Fan, X.; Mishra, C.; Sánchez-Sinencio, E. Single Miller Capacitor Frequency Compensation Technique for Low-Power Multistage Amplifiers. IEEE J. Solid-State Circuits 2005, 40 (3), 584–592. https://doi.org/10.1109/JSSC.2005.843602.
(11) Shirmohammadli, V.; Saberkari, A.; Martinez-Garcia, H.; Alarcon-Cot, E. An Output-Capacitorless FVF-Based Low-Dropout Regulator for Power Management Applications. IEEE Int. Conf. Ind. Informatics 2016, 0, 258–263. https://doi.org/10.1109/INDIN.2016.7819169.
(12) Chen, K.-H. Power Management Techniques for Integrated Circuit Design. 2016, 548.
(13) Keikhosravy, K.; Mirabbasi, S. A 0.13-μ m CMOS Low-Power Capacitor-Less LDO Regulator Using Bulk-Modulation Technique. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61 (11), 3105–3114. https://doi.org/10.1109/TCSI.2014.2334831.
(14) Leung, K. N.; Mok, P. K. T. A Capacitor-Free CMOS Low-Dropout Regulator With Damping-Factor-Control Frequency Compensation. IEEE J. Solid-State Circuits 2003, 38 (10), 1691–1702. https://doi.org/10.1109/JSSC.2003.817256.
(15) Adorni, N.; Stanzione, S.; Boni, A. A 10-MA LDO with 16-NA IQ and Operating from 800-MV Supply. IEEE J. Solid-State Circuits 2020, 55 (2), 404–413. https://doi.org/10.1109/JSSC.2019.2948820.
(16) Mandal, D.; Desai, C.; Bakkaloglu, B.; Kiaei, S. Adaptively Biased Output Cap-Less NMOS LDO with 19 Ns Settling Time. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66 (2), 167–171. https://doi.org/10.1109/TCSII.2018.2842642.
(17) Chen, C. M.; Hung, C. C. A Fast Self-Reacting Capacitor-Less Low-Dropout Regulator. Eur. Solid-State Circuits Conf. 2011, 375–378. https://doi.org/10.1109/ESSCIRC.2011.6044985.
(18) Man, T. Y.; Mok, P. K. T.; Chan, M. A High Slew-Rate Push-Pull Output Amplifier for Low-Quiescent Current Low-Dropout Regulators with Transient-Response Improvement. IEEE Trans. Circuits Syst. II Express Briefs 2007, 54 (9), 755–759. https://doi.org/10.1109/TCSII.2007.900347.
(19) Heng, S.; Pham, C. K. A Low-Power High-PSRR Low-Dropout Regulator with Bulk-Gate Controlled Circuit. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57 (4), 245–249. https://doi.org/10.1109/TCSII.2010.2043390.
(20) Chiesa, M.; Cittadini, L.; Di Battista, G.; Vanbever, L.; Vissicchio, S. Using Routers to Build Logic Circuits: How Powerful Is BGP?
(21) What is BGP and How Does Border Gateway Protocol Work? https://www.techtarget.com/searchnetworking/definition/BGP-Border-Gateway-Protocol (accessed Dec 29, 2021).
(22) Devices, T. E.; Corporation, S. Basics of Low-Dropout ( LDO ) Regulator ICs. 2021, 1–41.
(23) Selecting an Linear Regulator (LDO) | Richtek Technology https://www.richtek.com/selection-guide/en/selection-ldo-criteria.html (accessed Dec 29, 2021).
(24) Understand LDO Concepts to Achieve Optimal Designs | Analog Devices https://www.analog.com/en/analog-dialogue/articles/understand-ldo-concepts.html (accessed Dec 29, 2021).
(25) Lavalle-Aviles, F.; Torres, J.; Sanchez-Sinencio, E. A High Power Supply Rejection and Fast Settling Time Capacitor-Less LDO. IEEE Trans. Power Electron. 2019, 34 (1), 474–484. https://doi.org/10.1109/TPEL.2018.2826922.
(26) Li, G.; Qian, H.; Guo, J.; Mo, B.; Lu, Y.; Chen, D. Dual Active-Feedback Frequency Compensation for Output-Capacitorless LDO with Transient and Stability Enhancement in 65-Nm CMOS. IEEE Trans. Power Electron. 2020, 35 (1), 415–429. https://doi.org/10.1109/TPEL.2019.2910557.
(27) Guo, X.; Ren, H. P. Nonlinear Feedback Control of Compound Active-Clamp Soft-Switching Three-Phase PFC Converter Base on Load Observer. 2014 IEEE Energy Convers. Congr. Expo. ECCE 2014 2014, 1153–1158. https://doi.org/10.1109/ECCE.2014.6953530.
(28) Introduction to Low Dropout (LDO) Linear Voltage Regulators https://www.design-reuse.com/articles/42191/low-dropout-ldo-linear-voltage-regulators.html (accessed Dec 30, 2021).
(29) Amer, A.; Sánchez-Sinencio, E. A 140mA 90nm CMOS Low Drop-out Regulator with -56dB Power Supply Rejection at 10MHz.
(30) Shende, M. LDO Basics.
(31) Kerklaan, L. P. T.; Huijsing, J. H. A 100-MHz 100-DB Operational Amplifier with Multipath Nested Miller Compensation Structure. IEEE J. Solid-State Circuits 1992, 27 (12), 1709–1717. https://doi.org/10.1109/4.173096.
(32) Or, P. Y.; Leung, K. N. An Output-Capacitorless Low-Dropout Regulator with Direct Voltage-Spike Detection. IEEE J. Solid-State Circuits 2010, 45 (2), 458–466. https://doi.org/10.1109/JSSC.2009.2034805.
(33) Manda, M.; Pakala, S. H.; Furth, P. M. A Multi-Loop Low-Dropout FVF Voltage Regulator with Enhanced Load Regulation. Midwest Symp. Circuits Syst. 2017, 2017-August, 9–12. https://doi.org/10.1109/MWSCAS.2017.8052847.
(34) Hong, S. W.; Cho, G. H. High-Gain Wide-Bandwidth Capacitor-Less Low-Dropout Regulator (LDO) for Mobile Applications Utilizing Frequency Response of Multiple Feedback Loops. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63 (1), 46–57. https://doi.org/10.1109/TCSI.2015.2512702.
(35) Amaya, A.; Castro, F.; Roa, E. Improving Low-Dropout Regulator Frequency Stability by Exploiting the Equivalent Series Resistor and Featuring an Adaptive Biasing Strategy. Proc. - IEEE Int. Symp. Circuits Syst. 2019, 2019-May. https://doi.org/10.1109/ISCAS.2019.8702718.
(36) Fan, X.; Mishra, C.; Sánchez-Sinencio, E. Single Miller Capacitor Compensated Multistage Amplifiers for Large Capacitive Load Applications. Proc. - IEEE Int. Symp. Circuits Syst. 2004, 1. https://doi.org/10.1109/ISCAS.2004.1328239.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *