帳號:guest(18.191.42.234)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳祐豪
作者(外文):Wu, Yu-Hao
論文名稱(中文):X光激發放光光譜與時間解析X光激發放光光譜觀測氧化鋅與氮化鎵磊晶結構之異常放光現象之研究
論文名稱(外文):Anomalous emission of ZnO and GaN epitaxial structures studied by XEOL and TR-XEOL at TPS X-ray nanoprobe.
指導教授(中文):李志浩
湯茂竹
指導教授(外文):Lee, Chih-Hao
Tang, Mau-Tsu
口試委員(中文):林碧軒
曾紹欽
口試委員(外文):Lin, Bi-Hsuan
Tseng, Shao-Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學號:107001601
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:100
中文關鍵詞:X光激發放光時間解析X光激發放光吸收光譜光致放光氧化鋅氮化鎵
外文關鍵詞:XEOLTR-XEOLXASPLZnOGaN
相關次數:
  • 推薦推薦:0
  • 點閱點閱:855
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們在台灣光子源 (Taiwan Photon Source,TPS) 之X-光奈米探測 (X-ray Nanoprobe, XNP) 光束線,量測極化 (polar) 和非極化 (non-polar) 氧化鋅 ( ZnO)以及氮化鎵 (GaN) 之X光激發放光光譜 (X-ray excited optical luminescence, XEOL)和時間解析X光激發放光光譜 (time-resolved X-ray excited optical luminescence, TR-XEOL),並觀察其特殊放光行為。我們發現,在X光奈米聚焦的照射下,近帶邊緣 (near band edge, NEB) 的放光強度會快速的增強,同時,也發現氮化鎵參雜鎂 (magnesium) 元素後與氧化鎂鋅(MgZnO)在波長325 nm處有特殊放光現象,但此現象在光致發光光譜 (photoluminescence, PL) 量測並沒有被發現。我們推論奈米聚焦的X光可以改善晶體品質,從而提高近帶邊緣的放光強度。此外,我們研究了氧化鎂鋅磊晶薄膜(MgZnO epi-film) c-plane和a-plane的光學特性,並根據不同偏振性 (E⊥c和E∥c) 的X光吸收光譜 (X-ray absorption spectroscopy, XAS) 量測聚焦X光對於晶體結構與原子價電態之影響。我們並藉由台灣光子源的同步輻射加速器的混合運轉模式 (hybrid bunch mode) 進行了時間解析X光激發放光光譜分析,詳細記錄氧化鋅與氮化鎵完整的放光過程,並據以解釋此現象的物理機制。
The X-ray excited optical luminescence (XEOL) and time-resolved X-ray excited optical luminescence (TR-XEOL) at 23A X-ray Nanorpobe (XNP) beamline of the Taiwan Photon Source (TPS) were applied to investigate the emission properties of the non-polar and ZnO and GaN epi-films. We found that the emission luminescence of the near-band-edge (NBE) was dramatically enhanced with focused X-ray irradiation time. We also found that the peculiar emission at 325 nm after doping Magnesium element, which was not observed before PL measurement. We attribute to the improved crystal quality been under focused X-ray illumination resulting to enhancement of emission. Furthermore, we studied the optical properties of c-plane and a-plane MgZnO epi-film. According to the crystallographic orientations of E⊥c and E∥c was observed with X-ray absorption spectroscopy (XAS) to observe the effect of crystal structure and valance electron by focused X-ray. The hybrid bunch operational mode of TPS storage ring provides the pulse width of time scale of 30 ps to 310 ns, with which the dynamics of luminescence, namely TR-XEOL is recorded in detailed by a streak camera. Interpretations based on experimental results is provided to explain the physical mechanism under the phenomena.
致謝 …………………………………………………………………………………. 1
摘要 …………………………………………………………………………………. 2
Abstract ……………………………………………………………………………... 3
目錄 …………………………………………………………………………………. 4
圖目錄 ………………………………………………………………………………. 8
表目錄 ……………………………………………………………………………... 14

第一章、導論 ……………………………………………………………………... 15

1.1、研究動機與目的
1.2、論文安排

第二章、原理 ……………………………………………………………………... 18

2.1、PL
2.2、XEOL
2.3、TR-XEOL
a. Normal bunch mode
b. Single bunch
c. Hybrid bunch mode
2.4、Synchrotron radiation
2.5、TPS
2.6、TPS 23A與TLS 07A之Peak power density比較

第三章、實驗儀器原理與架構 …………………………………………………... 40

3.1、TPS23A Layout
3.2、PL system
3.2-1、He-Cd Laser
3.2-2、Spectrometer
3.2-3、CCD解析度
3.3、TR-PL system
3.3-1、Streak camera
3.3-2、Streak camera解析度

第四章、樣品準備 ………………………………………………………………... 50

4.1、Orientation

第五章、結果與討論 ……………………………………………………………... 52

5.1、a-plane MgZnO MQWs
5.2、a-plane MgZnO epi-film and c-plane MgZnO epi-film
a. c-plane MgZnO epi-film
b. a-plane MgZnO epi-film E∥c
c. a-plane MgZnO epi-film E⊥c
5.3、a-plane ZnO epi-film and c-plane ZnO wafer
a. c-plane ZnO wafer
b. a-plane ZnO epi-film
5.4、Li-doped c-plane ZnO epi-film
5.5、Mg-doped c-plane GaN epi-film and Si-doped c-plane GaN epi-film
a. Mg-doped c-plane GaN epi-film
b. Si-doped c-plane GaN epi-film

第六章、結論 ……………………………………………………………………... 69

6.1、Conclusions
6.2、機制模型
6.2-1、XEOL with defocused
6.2-2、XEOL with attenuator
6.2-3、快速熱退火(Rapid thermal annealing)前後比較
6.2-4、Zn 吸收邊前後比較
6.2-4、機制模型分析與討論
a. X-ray退火效果
b. 載子傳輸
c. 元素吸收
d. 局部表面電漿效應
6.3、擬合(Fitting)結果

第七章、未來展望 ………………………………………………………………... 93

7.1、Low-temperature XEOL and TR-XEOL at TPS 23A
7.2、Mg X-ray absorption
7.3、Nano X-ray diffraction to measure the crystal structure
7.4、實驗未來預期
a. 表面現象
b. TEM 影像
c. 表面XANES
d. 表面拉曼光譜
e. XPS

參考文獻 …………………………………………………………………………... 99
References

1. Zinc oxide bulk, thin films and nanostructures,c. Jagadish and s.Pearton(editors),© 2006 elsevier limited. All rights reserved.
2. P. Rodnyi, and I. Khodyuk, Optics and Spectroscopy 111, 776-785 (2011).
3. K. Liu, M. Sakurai, and M. Aono, Sensors 10, 8604-8634 (2010).
4. J.-W. Kang, B.-H. Kim, H. Song, Y.-R. Jo, S.-H. Hong, G. Y. Jung, B.-J. Kim, S.-J. Park, and C.-H. Cho, Nanoscale 10, 14812-14818 (2018).
5. J. H. Lim, S. M. Lee, H.-S. Kim, H. Y. Kim, J. Park, S.-B. Jung, G. C. Park, J. Kim, and J. Joo, Scientific reports 7, 41992 (2017).
6. B.-H. Lin, X.-Y. Li, D.-J. Lin, B.-L. Jian, H.-C. Hsu, H.-Y. Chen, S.-C. Tseng, C.-Y. Lee, B.-Y. Chen, and G.-C. J. S. r. Yin, Scientific reports 9, 1-8 (2019).
7. G. Martínez‐Criado, J. Segura‐Ruiz, B. Alén, J. Eymery, A. Rogalev, R. Tucoulou, and A. J. A. M. Homs, Advanced Materials 26, 7873-7879 (2014).
8. J. Tringe, H. Levie, B. El-Dasher, R. Swift, and M. J. A. P. L. Wall, Applied Physics Letters 98, 241907 (2011).
9. X. Wang, C. Xu, F. Qin, Y. Liu, A. Manohari, D. You, W. Liu, F. Chen, Z. Shi, and Q. Cui, Nanoscale 10, 17852-17857 (2018).
10. Z. Wang, X. Guo, and T.-K. Sham, Nanoscale 6, 6531-6536 (2014).
11. A. Abiyasa, S. Yu, S. Lau, E. S. Leong, and H. Yang, Applied physics letters 90, 231106 (2007).
12. E. Guidelli, O. Baffa, and D. Clarke, Scientific reports 5, 1-11 (2015).
13. D. İskenderoğlu, A. E. Kasapoğlu, and E. Gür, Materials Research Express 6, 036402 (2018).
14. H. M. Hill, A. F. Rigosi, C. Roquelet, A. Chernikov, T. C. Berkelbach, D. R. Reichman, M. S. Hybertsen, L. E. Brus, and T. F. J. N. l. Heinz, Nano letters 15, 2992-2997 (2015).
15. L. Reeves, Y. Wang, and T. F. Krauss, Advanced Optical Materials 6, 1800272 (2018).
16. S. Susarla, A. Kutana, J. A. Hachtel, V. Kochat, A. Apte, R. Vajtai, J. C. Idrobo, B. I. Yakobson, C. S. Tiwary, and P. M. Ajayan, Advanced Materials 29, 1702457 (2017).
17. T. K. J. A. M. Sham, Advanced Materials 26, 7896-7901 (2014).
18. T. Sham, D. Jiang, I. Coulthard, J. Lorimer, X. Feng, K. Tan, S. Frigo, R. Rosenberg, D. Houghton, and B. Bryskiewicz, Nature 363, 331-334 (1993).
19. B.-H. Lin, H.-Y. Chen, S.-C. Tseng, J.-X. Wu, B.-Y. Chen, C.-Y. Lee, G.-C. Yin, S.-H. Chang, M.-T. Tang, and W.-F. Hsieh, Applied Physics Letters 109, 192104 (2016).
20. S. B. Singh, Y.-F. Wang, Y.-C. Shao, H.-Y. Lai, S.-H. Hsieh, M. V. Limaye, C.-H. Chuang, H.-C. Hsueh, H. Wang, and J.-W. Chiou, Nanoscale 6, 9166-9176 (2014).
21. L. Mino, E. Borfecchia, J. Segura-Ruiz, C. Giannini, G. Martinez-Criado, and C. J. R. o. M. P. Lamberti, Reviews of Modern Physics 90, 025007 (2018).
22. B.-H. Lin, S.-C. Tseng, X.-Y. Li, D.-J. Lin, H.-C. Hsu, Y.-T. Li, Y.-C. Chiu, C.-Y. Lee, B.-Y. Chen, and G.-C. Yin, Microscopy and Microanalysis 24, 198-199 (2018).
23. Hamamatsu photonics.
24. Q. Fan, G. V. Biesold‐McGee, J. Ma, Q. Xu, S. Pan, J. Peng, and Z. Lin, Angewandte Chemie International Edition 59, 1030-1046 (2020).
25. B. Wenger, P. K. Nayak, X. M. Wen, S. V. Kesava, N. K. Noel, and H. J. Snaith, Nat. Commun. 8, 10 (2017).
26. B.-H. Lin, Y.-C. Wu, H.-Y. Chen, S.-C. Tseng, J.-X. Wu, X.-Y. Li, B.-Y. Chen, C.-Y. Lee, G.-C. Yin, and S.-H. J. O. e. Chang, Optics express 26, 2731-2739 (2018).
27. B.-H. Lin, Y.-C. Wu, J.-F. Lee, M.-T. Tang, and W.-F. Hsieh, Applied Physics Letters 114, 091102 (2019).
28. B.-H. Lin, Y.-H. Wu, X.-Y. Li, H.-C. Hsu, Y.-C. Chiu, M.-T. Tang, and W.-F. J. J. o. S. R. Hsieh, Journal of Synchrotron Radiation 27 (2020).
29. G. E. Ice, J. D. Budai, and J. W. J. S. Pang, Science 334, 1234-1239 (2011).
30. 國家同步輻射研究中心簡介.
31. G.-C. Yin, S.-H. Chang, B.-Y. Chen, H.-Y. Chen, B.-H. Lin, S.-C. Tseng, C.-Y. Lee, J.-X. Wu, S.-Y. Wu, and M.-T. Tang, "X-ray nanoprobe project at taiwan photon source," in AIP Conference Proceedings(AIP Publishing LLC2016), p. 030004.
32. G.-C. Yin, S.-H. Chang, B.-Y. Chen, H.-Y. Chen, B.-H. Lin, S.-C. Tseng, C.-Y. Lee, S.-Y. Wu, and M.-T. Tang, "Multimodal hard x-ray nanoprobe facility by nested montel mirrors aimed for 40nm resolution at taiwan photon source," in AIP Conference Proceedings(AIP Publishing LLC2016), p. 020026.
33. Kimmon koha co., ltd.
34. Horiba.
35. A. Ney, K. Ollefs, S. Ye, T. Kammermeier, V. Ney, T. C. Kaspar, S. A. Chambers, F. Wilhelm, and A. Rogalev, Physical review letters 100, 157201 (2008).
36. B.-H. Lin, Y.-H. Wu, T.-S. Wu, Y.-C. Wu, X.-Y. Li, W.-R. Liu, M.-T. Tang, and W.-F. J. A. P. L. Hsieh, Applied Physics Letters 115, 171903 (2019).
37. W. Liu, B. Yao, Y. Li, B. Li, C. Zheng, B. Zhang, C. Shan, Z. Zhang, J. Zhang, and D. Shen, Applied surface science 255, 6745-6749 (2009).
38. X. Wei, R. Zhao, Y. Wang, L. Liu, and B. Cao, Surface engineering 28, 678-682 (2012).
39. B. Lin, W.-R. Liu, C. Lin, S. Hsu, S. Yang, C. Kuo, C.-H. Hsu, W. Hsieh, F.-S. Chien, and C. Chang, ACS Applied Materials & Interfaces 4, 5333-5337 (2012).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *