帳號:guest(3.128.30.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉仕傑
作者(外文):Liou, Shih-Jie
論文名稱(中文):探討石墨烯量子點修飾過渡金屬二硫族化合物之產氫反應
論文名稱(外文):GQDs Decorated Transition Metal Dichalcogenides for Hydrogen Evolution Reaction
指導教授(中文):蘇雲良
指導教授(外文):Soo, Yun-Liang
口試委員(中文):湯茂竹
翁世璋
口試委員(外文):Tang, Mau-Tsu
Weng, Shih-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:107001503
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:65
中文關鍵詞:二維材料過渡金屬二硫族化合物石墨烯量子點電化學產氫
外文關鍵詞:Two-dimensional materialsTransition Metal DichalcogenidesGQDsHydrogen Evolution Reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:36
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來探討利用二維過渡金屬二硫化合物(TMDCs)之材料做產氫催化反應越來越熱門。為了提升產氫效果,有些文章討論在TMDCs之材料上摻雜金屬來讓產氫效果更好,又有些文章是改變TMDCs材料的結構來使催化點位變多進而提升產氫效率。現今,用簡單的Bottom-up方法製備石墨烯量子點(GQDs)或石墨烯(GO)已經是成熟的技術,利用控制有機前體檸檬酸(CA)的碳化程度來製備石墨烯量子點(GQDs)或石墨烯(GO)。本論文是利用石墨烯量子點(GQDs)修飾MoS2與WSe2這兩種不同的TMDCs材料後,探討這兩種複合材料之產氫效率。
論文分成兩部分,第一部分是用離子插層法製備出1T相與2H相的MoS2¬材料,再利用Bottom-up方式製程出GQDs來修飾1T相與2H相的MoS2。我們利用UV-vis , Raman spectroscopy, XRD, XPS等四種測量方式確認我們做出來的樣品為實驗所需。第二部分是利用常見的薄膜製程技術:化學氣相沉積法(CVD)長出WSe2薄膜,再用GQDs修飾WSe2。WSe2是用Raman spectroscopy, PL, AFM等量測技術來確認材料成分與長晶後的薄膜厚度。將兩種TMDCs材料與GQDs合成複合材料後,再用電化學的三電極系統研究兩樣複合材料之產氫效率。
第一部分的研究結果發現:1T相的MoS2產氫效果會比2H相來的好,且有經過GQDs修飾過的材料,也會提升其產氫效率。第二部分因為CVD是我們實驗室是新的技術,目前長晶技術還尚未成熟,從Raman spectroscopy, PL, AFM的量測數據可以得知我們還無法長出少層數之樣品,但已經確定可以從前驅物的粉末製造出WSe2的薄膜,要將WSe2長成少層甚至單層數的樣品是指日可待,不久的未來就可以把少層或單層數的WSe2經過GQDs修飾後去探討其複合材料之產氫效果。
Recently, two-dimensional transition metal dichalcogenides (TMDs) materials have been widely studied for their superior catalytic performance in hydrogen evolution reaction (HER). There are articles discussing enhanced HER efficiency due to metal ion doping. There are also articles about changing the structures of TMD material to increase the number of catalytic sites for improving HER efficiency. Nowadays, simple bottom-up method has become a mature technique to prepare graphene quantum dots (GQDs) or graphene oxide (GO) by tuning the carbonization degree of citric acid. In this thesis, we studied the HER activity of GQDs decorated molybdenum disulfide (MoS2) and tungsten diselenide (WSe2¬) composites.
The thesis is divided into two parts. The first part is about the preparation of 1T and 2H MoS2 by ion intercalation method and the decoration of MoS2 sample with GQDs. We have used UV-vis to measure the visible and ultraviolet light absorption rate of the materials, Raman spectroscopy and XRD to identify the crystal structures and XPS measurements to probe the valence states of the sample. The second part is about the preparation of WSe2 films by chemical vapor deposition (CVD) method and the decoration of WSe2 film with GQDs. Raman spectroscopy and photoluminescence were employed to characterize the samples. Atomic force microscopy (AFM) was used to observe the morphology of the samples and to measure their thickness. The HER catalytic activity of the samples was evaluated by using a three-electrode system.
The results of our measurements show that 1T-MoS2 has better HER efficiency than 2H-MoS2. With GQDs decorated on MoS2, the HER efficiency can be improved. The 1T-MoS2@GQDs composites has the best HER efficiency.
摘要 I
Abstract II
致謝 III
目錄 IV
第一章 序論--1
1-1 研究動機--1
1-2 研究目的--2
第二章 文獻回顧--3
2-1 二維過渡金屬二硫族化合物(TMDCs)材料介紹--3
2-2 二硫化鉬(MoS2)材料介紹--4
2-3 石墨烯量子點(GQDs)材料介紹--5
2-4 二硒化鎢(WSe2)材料介紹--5
第三章 實驗方法與原理--6
3-1 電化學(Electrochemical)--6
3-1-1 電化學產氫(Hydrogen Evolution Reaction;HER)--6
3-1-2 線性伏安法(Linear Sweep Voltammetry;LSV)--8
3-1-3 電化學阻抗頻譜(Electrochemical Impedance Spectroscopy;EIS)--10
3-2 拉曼光譜(Raman Spectroscopy)--12
3-3 紫外-可見光光譜(Ultraviolet–visible spectroscopy;UV-vis)--14
3-4 X光射線繞射(X-ray Diffraction;XRD)--15
3-5 X光射線光電子能譜學(X-ray Photoelectron Spectroscopy;XPS )--16
3-6 原子力顯微鏡(Atomic Force Mictroscopy;AFM )--16
3-7 光致發光光譜(Photoluminescence Spectrum;PL)--17
第一部分:石墨烯量子點修飾二硫化鉬--18
第四章 樣品製備與實驗流程--19
4-1 樣品製備--19
4-1-1 二硫化鉬製備--19
4-1-2 石墨烯量子點製備--21
4-2 實驗藥劑--23
4-3 實驗流程--24
4-4 樣品製備步驟--25
4-4-1 MoS2製備步驟--25
4-4-2 GQDs製備步驟--25
4-4-3 MoS2@GQDs製備步驟--27
第五章 數據分析與討論--28
5-1 紫外-可見光光譜(Ultraviolet-visible Spectroscopy)--28
5-2 X光射線繞射(X-ray Diffraction)--30
5-3 拉曼光譜分析(Raman Spectroscopy)--32
5-4 X光射線光電子能譜學(X-ray Photoelectron Spectroscopy)--34
5-5 電化學分析(The Electrochemical Analysis)--37
第六章 結論與展望--43

第二部分:石墨烯量子點修飾二硒化鎢--44
第四章 樣品製備與實驗流程--45
4-1 樣品製備--45
4-1-1 二硒化鎢製備--45
4-1-2 石墨烯量子點製備--47
4-2 實驗藥劑--49
4-3 實驗流程--50
4-4 樣品製備步驟--51
4-4-1 WSe2製備步驟--51
4-4-2 GQDs製備步驟--52
第五章 數據分析與討論--53
5-1 拉曼光譜分析(Raman Spectroscopy)--53
5-2 光致發光光譜分析(Photoluminescence Spectroscopy)--56
5-3 原子力顯微鏡(Atomic Force Microscopy)--58
第六章 結論與展望--59
參考文獻--60
[1] Levna Chacko,1 Pankaj Kumar Rastogi,2 and P. M. Aneesh, ‟ Phase Engineering from 2H to 1T-MoS2 for Efficient Ammonia PL Sensor and Electrocatalyst for Hydrogen Evolution Reaction.” J. Electrochem. Soc. 166(8) H263-H271 (2019).
[2] Hongchao Li, Jianpeng Zou, Senlin Xie, Xian Leng, Di Gao, Hongzhi Yang,Xu Mao, ‟ WSe2 nanofilms grown on graphite as efficient electrodes for hydrogen evolution reactions.” J. Alloys Compd. 725 884-890 (2017).
[3] Sunil R. Kadam, Andrey N. Enyashin, Lothar Houben, Ronen Bar-Ziv and Maya Bar-Sadan, ‟Ni–WSe2 nanostructures as efficient catalysts for electrochemical hydrogen evolution reaction (HER) in acidic and alkaline media.” J. Mater. Chem. A, 1403-1416 (2019).
[4] Bangjun Guo, Ke Yu, Honglin Li, Ruijuan Qi, Yuanyuan Zhang, Haili Song, Zheng Tang, Ziqiang Zhu,and Mingwei Chen, ‟ Coral-Shaped MoS2 Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction.” ACS Appl. 3653-3660 (2017).
[5] Yongqiang Dong, Jingwei Shao, Congqiang Chen, Hao Li, Ruixue Wang, Yuwu Chi , Xiaomei Lin, Guonan Chen, ‟ Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid.” Carbon 50, 4738-4743 (2012).
[6] https://zh.wikipedia.org/wiki/%E6%B0%A2%E7%BB%8F%E6%B5%8E
[7] https://zh.wikipedia.org/wiki/%E6%B0%A2
[8] http://www.airproducts.com.tw/Industries/Energy/Power/Power-Generation/hydrogen-basics.aspx
[9] Nuwan H. Attanayake, Akila C. Thenuwara, Abhirup Patra, Yaroslav V. Aulin, Thi M. Tran, Himanshu Chakraborty, Eric Borguet, Michael L. Klein, John P. Perdew,and Daniel R. Strongin, ‟ Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS2 for the Hydrogen Evolution Reaction.” ACS Energy Lett. 7-13 (2017).
[10] Dezhi Wang, Xiangyong Zhang, Siyuan Bao, Zhongting Zhang, Hao Feia and Zhuangzhi Wu, ‟ Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution.” J.Mater. Chem. A, 2681-2688 (2016).
[11] Qing Tang and De-en Jiang, ‟ Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles.” ACS Catal. 4953-4961 (2016).
[12] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, ‟ Ultrahigh electron mobility in suspended graphene.” Solid State Communications, 351-355 (2008).
[13] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, , I. Grigorieva, and A. Firsov, ‟ Electric Field Effect in Atomically Thin Carbon Films.” Science 306, 666-669 (2004).
[14] Ye, M., Winslow, D., Zhang, D., Pandey, R., & Yap, Y. K, ‟ Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films.” Photonics, 288-307 (2015).
[15] Fernando Wypych, Robert Schöllhorn, ‟ 1T-MoS2, a new metallic modification of molybdenum disulfide.” J. Chem. Soc., Chem. Commun., 1386-1388 (1992).
[16] B. Schonfeld, J. J. Huangt, S. C. Moss, ‟ Anisotropic Mean-Square Displacements (MSD) in Single Crystals of 2H- and 3R-MoS2.” Acta Cryst. B39, 404-407 (1983).
[17] I. Song, C. Parkab, and H.-C. Choi, ‟ Synthesis and properties of molybdenum disulphide: from bulk to atomic layers.” RSC Adv., 7495-7514 (2015).
[18] https://zh.wikipedia.org/wiki/%E7%9F%B3%E5%A2%A8%E7%83%AF
[19] https://zh.wikipedia.org/wiki/%E4%BA%8C%E7%A1%92%E5%8C%96%E9%92%A8
[20] http://www.tungsten-powder.com/traditional/tungsten-diselenide.html
[21] https://zh.wikipedia.org/wiki/%E7%94%B5%E5%8C%96%E5%AD%A6#%E5%8E%9F%E7%90%86
[22] https://zh.wikipedia.org/wiki/%E6%B3%95%E6%8B%89%E7%AC%AC%E7%94%B5%E8%A7%A3%E5%AE%9A%E5%BE%8B
[23] https://zh.wikipedia.org/wiki/%E5%BE%AA%E7%92%B0%E4%BC%8F%E5%AE%89%E6%B3%95#%E4%B8%89%E7%94%B5%E6%9E%81%E7%B3%BB%E7%BB%9F
[24] https://kknews.cc/zh-tw/digital/qvxlykg.html
[25] https://zh.wikipedia.org/wiki/%E5%B7%B4%E7%89%B9%E5%8B%92-%E7%A6%8F%E5%B0%94%E9%BB%98%E6%96%B9%E7%A8%8B
[26] http://www.zensor.com.tw/assets/download/Zensor%20R&D%20Technology-2.1%20Fundamental%20AC%20impedance-%E4%B8%AD%E6%96%87.pdf
[27] https://kknews.cc/zh-tw/science/vza5ony.html
[28] https://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%AD%B8
[29] https://www.rightek.com.tw/product_detail.php?id=186
[30] https://zh.wikipedia.org/wiki/%E6%AF%94%E5%B0%94-%E6%9C%97%E4%BC%AF%E5%AE%9A%E5%BE%8B
[31] Rosendo López, Ricardo Gómez, ‟ Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study.” J sol-Gel Sci Technol 61 (2012).
[32] https://zh.wikipedia.org/wiki/X%E5%85%89%E6%95%A3%E5%B0%84%E6%8A%80%E6%9C%AF
[33] http://chiuphysics.cgu.edu.tw/yun-ju/CGUWeb/SciTheme/Bragg100/HomeBragg.htm
[34] https://zh.wikipedia.org/wiki/X%E5%B0%84%E7%BA%BF%E5%85%89%E7%94%B5%E5%AD%90%E8%83%BD%E8%B0%B1%E5%AD%A6
[35] https://zh.wikipedia.org/wiki/%E5%8E%9F%E5%AD%90%E5%8A%9B%E6%98%BE%E5%BE%AE%E9%95%9C
[36] https://zh.wikipedia.org/wiki/%E5%85%89%E8%87%B4%E5%8F%91%E5%85%89
[37] https://web.phys.ntu.edu.tw/asc/FunPhysExp/ModernPhys/exp/Microsoft%20Word%20-%20semiconductor%20photoluminescence.pdf
[38] 马浩,杨瑞霞,李春静, ‟ 层状二硫化钼材料的制备和应用进展.” 材料報導A∶總述篇, 第31卷第2期 (2017).
[39] Danyun Xu, Yuanzhi Zhu, Jiapeng Liu, Yang Li, Wenchao Peng, Guoliang Zhang, Fengbao Zhang and Xiaobin Fan, ‟ Microwave-assisted 1T to 2H phase reversion of MoS2 in solution: a fast route to processable dispersions of 2H-MoS2 nanosheets and nanocomposites.” Nanotechnology 27, 385604 (2016).
[40] Dan Sun, Dan Huang, Haiyan Wang, Gui-Liang Xu, Xiaoyi Zhang, Rui Zhang, Yougen Tang, Deia Abd EI-Hady, Wael Alshitari, Abdullah Saad AL-Bogami, Khalil Amine, Minhua Shao, ‟ 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2.” Nano Energy 61, 361-369 (2019).
[41] Zhu Lian Wu, Ming Xuan Gao, Ting Ting Wang, Xiao Yan Wan, Lin Ling Zheng and Cheng Zhi Huang, ‟ A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots.” Nanoscale, 3868-3874 (2014).
[42] Changgu Lee, Hugen Yan, Louis E. Brus, Tony F. Heinz, James Hone, and Sunmin Ryu, ‟ Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.” ACS Nona, 2695-2700 (2010).
[43] Jiaying Mo, Simson Wu, Thomas H. M. Lau, Ryuichi Kato, Kazu Suenaga, Tai-Sing Wu, Yun-Liang Soo, John S. Foord,and Shik Chi Edman Tsang, ‟ Transition Metal Atom-doped Monolayer MoS2 in Proton Exchange Membrane (PEM) Electrolyzer.” Elsevier Ltd, 2590-0498 (2019).
[44] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, ‟ Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.” Nanoscale, 9677-9683 (2013).
[45] Xin Luo, Yanyuan Zhao, Jun Zhang, Minglin Toh, Christian Kloc, Qihua Xiong, and Su Ying Quek, ‟ Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2.” Phys. Rev. B 88, 195313 (2013).
[46] Philipp Tonndorf, Robert Schmidt, Philipp Böttger, Xiao Zhang, Janna Börner, Andreas Liebig, Manfred Albrecht, Christian Kloc, Ovidiu Gordan, Dietrich R. T. Zahn, Steffen Michaelis de Vasconcellos, and Rudolf Bratschitsch, ‟ Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2.” OSA, 4908-4916 (2013).
[47] Weijie Zhao, Zohreh Ghorannevis, Leiqiang Chu, Minglin Toh, Christian Kloc, Ping-Heng Tan, Goki Eda, ‟ Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2.” ACS Nano, 791-797 (2013).
[48] Hong Li, Qing Zhang, Chin Chong Ray Yap, Beng Kang Tay, Teo Hang Tong Edwin, Aurelien Olivier, Dominique Baillargeat, ‟ From Bulk to Monolayer MoS2: Evolution of Raman Scattering.” Adv. Funct. Mater., 1385-1390 (2012).
[49] H. Terrones, E. Del Corro, S. Feng, J. M. Poumirol, D. Rhodes, D. Smirnov, N. R. Pradhan, Z. Lin, M. A. T. Nguyen, A. L. Elías, T. E. Mallouk, L. Balicas, M. A. Pimenta & M. Terrones, ‟ New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides.” Scientific Reports, 4215 (2015).
[50] Weijie Zhao, Zohreh Ghorannevis, Kiran Kumar Amara, Jing Ren Pang, Minglin Toh, Xin Zhang, Christian Kloc, Ping Heng Tane and Goki Eda, ‟ Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.” Nanoscale, 9677-9683 (2013).
[51] https://baike.baidu.com/item/%E7%A2%B3%E5%8C%96%E4%BD%9C%E7%94%A8#3_1
[52] 林聖凱,方之宜,張儀真,葉珮君,江偉宏, ‟ 石墨烯量子點的合成、特性及感測應用.” 化工, ISSN, 1015-8359 (2018).
[53] Ramalingam Vinoth, Indrajit M. Patil, Alagarsamy Pandikumar, Bhalchandra A. Kakade, Nay Ming Huang, Dionysiou D. Dionysios, and Bernaurdshaw Neppolian, ‟Synergistically Enhanced Electrocatalytic Performance of an N‑Doped Graphene Quantum Dot-Decorated 3D MoS2−Graphene Nanohybrid for Oxygen Reduction Reaction.” ACS Omega, 971-980 (2016).
[54] Tong Guoa, Lina Wanga, Sen Suna, Yan Wanga, Xiaoling Chena, Kangning Zhanga, Dongxia Zhanga, Zhonghua Xueb, Xibin Zhou, ‟Layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots as an enhanced electrochemical hydrogen evolution catalyst.” CCL 1253-1260 (2019).
[55] 吴娟霞, 谢黎明, ‟二维材料的拉曼光谱研究进展” 科學通報, 63:3727-3746 (2018).
[56] Qing Tang and De-en Jiang.(2016).‟Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles. ” ACS Catal., 4953-4961 (2016).
(此全文20250910後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *