|
[1] Levna Chacko,1 Pankaj Kumar Rastogi,2 and P. M. Aneesh, ‟ Phase Engineering from 2H to 1T-MoS2 for Efficient Ammonia PL Sensor and Electrocatalyst for Hydrogen Evolution Reaction.” J. Electrochem. Soc. 166(8) H263-H271 (2019). [2] Hongchao Li, Jianpeng Zou, Senlin Xie, Xian Leng, Di Gao, Hongzhi Yang,Xu Mao, ‟ WSe2 nanofilms grown on graphite as efficient electrodes for hydrogen evolution reactions.” J. Alloys Compd. 725 884-890 (2017). [3] Sunil R. Kadam, Andrey N. Enyashin, Lothar Houben, Ronen Bar-Ziv and Maya Bar-Sadan, ‟Ni–WSe2 nanostructures as efficient catalysts for electrochemical hydrogen evolution reaction (HER) in acidic and alkaline media.” J. Mater. Chem. A, 1403-1416 (2019). [4] Bangjun Guo, Ke Yu, Honglin Li, Ruijuan Qi, Yuanyuan Zhang, Haili Song, Zheng Tang, Ziqiang Zhu,and Mingwei Chen, ‟ Coral-Shaped MoS2 Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction.” ACS Appl. 3653-3660 (2017). [5] Yongqiang Dong, Jingwei Shao, Congqiang Chen, Hao Li, Ruixue Wang, Yuwu Chi , Xiaomei Lin, Guonan Chen, ‟ Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid.” Carbon 50, 4738-4743 (2012). [6] https://zh.wikipedia.org/wiki/%E6%B0%A2%E7%BB%8F%E6%B5%8E [7] https://zh.wikipedia.org/wiki/%E6%B0%A2 [8] http://www.airproducts.com.tw/Industries/Energy/Power/Power-Generation/hydrogen-basics.aspx [9] Nuwan H. Attanayake, Akila C. Thenuwara, Abhirup Patra, Yaroslav V. Aulin, Thi M. Tran, Himanshu Chakraborty, Eric Borguet, Michael L. Klein, John P. Perdew,and Daniel R. Strongin, ‟ Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS2 for the Hydrogen Evolution Reaction.” ACS Energy Lett. 7-13 (2017). [10] Dezhi Wang, Xiangyong Zhang, Siyuan Bao, Zhongting Zhang, Hao Feia and Zhuangzhi Wu, ‟ Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution.” J.Mater. Chem. A, 2681-2688 (2016). [11] Qing Tang and De-en Jiang, ‟ Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles.” ACS Catal. 4953-4961 (2016). [12] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, ‟ Ultrahigh electron mobility in suspended graphene.” Solid State Communications, 351-355 (2008). [13] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, , I. Grigorieva, and A. Firsov, ‟ Electric Field Effect in Atomically Thin Carbon Films.” Science 306, 666-669 (2004). [14] Ye, M., Winslow, D., Zhang, D., Pandey, R., & Yap, Y. K, ‟ Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films.” Photonics, 288-307 (2015). [15] Fernando Wypych, Robert Schöllhorn, ‟ 1T-MoS2, a new metallic modification of molybdenum disulfide.” J. Chem. Soc., Chem. Commun., 1386-1388 (1992). [16] B. Schonfeld, J. J. Huangt, S. C. Moss, ‟ Anisotropic Mean-Square Displacements (MSD) in Single Crystals of 2H- and 3R-MoS2.” Acta Cryst. B39, 404-407 (1983). [17] I. Song, C. Parkab, and H.-C. Choi, ‟ Synthesis and properties of molybdenum disulphide: from bulk to atomic layers.” RSC Adv., 7495-7514 (2015). [18] https://zh.wikipedia.org/wiki/%E7%9F%B3%E5%A2%A8%E7%83%AF [19] https://zh.wikipedia.org/wiki/%E4%BA%8C%E7%A1%92%E5%8C%96%E9%92%A8 [20] http://www.tungsten-powder.com/traditional/tungsten-diselenide.html [21] https://zh.wikipedia.org/wiki/%E7%94%B5%E5%8C%96%E5%AD%A6#%E5%8E%9F%E7%90%86 [22] https://zh.wikipedia.org/wiki/%E6%B3%95%E6%8B%89%E7%AC%AC%E7%94%B5%E8%A7%A3%E5%AE%9A%E5%BE%8B [23] https://zh.wikipedia.org/wiki/%E5%BE%AA%E7%92%B0%E4%BC%8F%E5%AE%89%E6%B3%95#%E4%B8%89%E7%94%B5%E6%9E%81%E7%B3%BB%E7%BB%9F [24] https://kknews.cc/zh-tw/digital/qvxlykg.html [25] https://zh.wikipedia.org/wiki/%E5%B7%B4%E7%89%B9%E5%8B%92-%E7%A6%8F%E5%B0%94%E9%BB%98%E6%96%B9%E7%A8%8B [26] http://www.zensor.com.tw/assets/download/Zensor%20R&D%20Technology-2.1%20Fundamental%20AC%20impedance-%E4%B8%AD%E6%96%87.pdf [27] https://kknews.cc/zh-tw/science/vza5ony.html [28] https://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%AD%B8 [29] https://www.rightek.com.tw/product_detail.php?id=186 [30] https://zh.wikipedia.org/wiki/%E6%AF%94%E5%B0%94-%E6%9C%97%E4%BC%AF%E5%AE%9A%E5%BE%8B [31] Rosendo López, Ricardo Gómez, ‟ Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study.” J sol-Gel Sci Technol 61 (2012). [32] https://zh.wikipedia.org/wiki/X%E5%85%89%E6%95%A3%E5%B0%84%E6%8A%80%E6%9C%AF [33] http://chiuphysics.cgu.edu.tw/yun-ju/CGUWeb/SciTheme/Bragg100/HomeBragg.htm [34] https://zh.wikipedia.org/wiki/X%E5%B0%84%E7%BA%BF%E5%85%89%E7%94%B5%E5%AD%90%E8%83%BD%E8%B0%B1%E5%AD%A6 [35] https://zh.wikipedia.org/wiki/%E5%8E%9F%E5%AD%90%E5%8A%9B%E6%98%BE%E5%BE%AE%E9%95%9C [36] https://zh.wikipedia.org/wiki/%E5%85%89%E8%87%B4%E5%8F%91%E5%85%89 [37] https://web.phys.ntu.edu.tw/asc/FunPhysExp/ModernPhys/exp/Microsoft%20Word%20-%20semiconductor%20photoluminescence.pdf [38] 马浩,杨瑞霞,李春静, ‟ 层状二硫化钼材料的制备和应用进展.” 材料報導A∶總述篇, 第31卷第2期 (2017). [39] Danyun Xu, Yuanzhi Zhu, Jiapeng Liu, Yang Li, Wenchao Peng, Guoliang Zhang, Fengbao Zhang and Xiaobin Fan, ‟ Microwave-assisted 1T to 2H phase reversion of MoS2 in solution: a fast route to processable dispersions of 2H-MoS2 nanosheets and nanocomposites.” Nanotechnology 27, 385604 (2016). [40] Dan Sun, Dan Huang, Haiyan Wang, Gui-Liang Xu, Xiaoyi Zhang, Rui Zhang, Yougen Tang, Deia Abd EI-Hady, Wael Alshitari, Abdullah Saad AL-Bogami, Khalil Amine, Minhua Shao, ‟ 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2.” Nano Energy 61, 361-369 (2019). [41] Zhu Lian Wu, Ming Xuan Gao, Ting Ting Wang, Xiao Yan Wan, Lin Ling Zheng and Cheng Zhi Huang, ‟ A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots.” Nanoscale, 3868-3874 (2014). [42] Changgu Lee, Hugen Yan, Louis E. Brus, Tony F. Heinz, James Hone, and Sunmin Ryu, ‟ Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.” ACS Nona, 2695-2700 (2010). [43] Jiaying Mo, Simson Wu, Thomas H. M. Lau, Ryuichi Kato, Kazu Suenaga, Tai-Sing Wu, Yun-Liang Soo, John S. Foord,and Shik Chi Edman Tsang, ‟ Transition Metal Atom-doped Monolayer MoS2 in Proton Exchange Membrane (PEM) Electrolyzer.” Elsevier Ltd, 2590-0498 (2019). [44] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, ‟ Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.” Nanoscale, 9677-9683 (2013). [45] Xin Luo, Yanyuan Zhao, Jun Zhang, Minglin Toh, Christian Kloc, Qihua Xiong, and Su Ying Quek, ‟ Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2.” Phys. Rev. B 88, 195313 (2013). [46] Philipp Tonndorf, Robert Schmidt, Philipp Böttger, Xiao Zhang, Janna Börner, Andreas Liebig, Manfred Albrecht, Christian Kloc, Ovidiu Gordan, Dietrich R. T. Zahn, Steffen Michaelis de Vasconcellos, and Rudolf Bratschitsch, ‟ Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2.” OSA, 4908-4916 (2013). [47] Weijie Zhao, Zohreh Ghorannevis, Leiqiang Chu, Minglin Toh, Christian Kloc, Ping-Heng Tan, Goki Eda, ‟ Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2.” ACS Nano, 791-797 (2013). [48] Hong Li, Qing Zhang, Chin Chong Ray Yap, Beng Kang Tay, Teo Hang Tong Edwin, Aurelien Olivier, Dominique Baillargeat, ‟ From Bulk to Monolayer MoS2: Evolution of Raman Scattering.” Adv. Funct. Mater., 1385-1390 (2012). [49] H. Terrones, E. Del Corro, S. Feng, J. M. Poumirol, D. Rhodes, D. Smirnov, N. R. Pradhan, Z. Lin, M. A. T. Nguyen, A. L. Elías, T. E. Mallouk, L. Balicas, M. A. Pimenta & M. Terrones, ‟ New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides.” Scientific Reports, 4215 (2015). [50] Weijie Zhao, Zohreh Ghorannevis, Kiran Kumar Amara, Jing Ren Pang, Minglin Toh, Xin Zhang, Christian Kloc, Ping Heng Tane and Goki Eda, ‟ Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.” Nanoscale, 9677-9683 (2013). [51] https://baike.baidu.com/item/%E7%A2%B3%E5%8C%96%E4%BD%9C%E7%94%A8#3_1 [52] 林聖凱,方之宜,張儀真,葉珮君,江偉宏, ‟ 石墨烯量子點的合成、特性及感測應用.” 化工, ISSN, 1015-8359 (2018). [53] Ramalingam Vinoth, Indrajit M. Patil, Alagarsamy Pandikumar, Bhalchandra A. Kakade, Nay Ming Huang, Dionysiou D. Dionysios, and Bernaurdshaw Neppolian, ‟Synergistically Enhanced Electrocatalytic Performance of an N‑Doped Graphene Quantum Dot-Decorated 3D MoS2−Graphene Nanohybrid for Oxygen Reduction Reaction.” ACS Omega, 971-980 (2016). [54] Tong Guoa, Lina Wanga, Sen Suna, Yan Wanga, Xiaoling Chena, Kangning Zhanga, Dongxia Zhanga, Zhonghua Xueb, Xibin Zhou, ‟Layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots as an enhanced electrochemical hydrogen evolution catalyst.” CCL 1253-1260 (2019). [55] 吴娟霞, 谢黎明, ‟二维材料的拉曼光谱研究进展” 科學通報, 63:3727-3746 (2018). [56] Qing Tang and De-en Jiang.(2016).‟Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles. ” ACS Catal., 4953-4961 (2016).
|