帳號:guest(3.149.28.126)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):杜龍昕
作者(外文):Tu, Lung-Hsin
論文名稱(中文):有序缺陷化合物於銅銦鎵硒薄膜太陽能電池之研究
論文名稱(外文):Investigation of ordered vacancy compounds on Cu(In,Ga)Se2 solar cells
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):林麗瓊
林姿瑩
郭長信
沈昌宏
林士剛
口試委員(外文):Chen, Li-Chyong
Lin, Tzu-Ying
Kuo, Chang-Hsin
Shen, Chang-Hong
Lin, Shih-Kang
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107000801
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:142
中文關鍵詞:銅銦鎵硒太陽能電池有序缺陷化合物硒化製程
外文關鍵詞:CIGSsolar cellsordered vacancy compoundsselenization process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:65
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
銅銦鎵硒薄膜太陽能電池具有可撓、高吸收、可調控能隙以及直接能隙的特性,被認為是次世代太陽能電池候選人之一,其特性可應用於雙面吸光太陽能電池、彎曲基板以及堆疊型太陽能電池,即使銅銦鎵硒薄膜太陽能電池具有高於其它薄膜太陽能電池之轉換效率,然而其製造成本遠高於傳統矽基太陽能電池,使其較少被使用於商業模組,合金後硒化法符合大量生產以及工業目的,其製程包含了濺鍍前驅層以及高溫硒化,雖然合金後硒化法已經開發超過三十年,受限於較低的開路電壓,使得其製程開發進度仍然較緩慢,在此論文中,我們致力於引入新的技術與概念,以改善鎵成分梯度、二次相於銅銦鎵硒以及鉬背電極接觸面以及不足的晶粒成長,首先,我們在藉由在硒化過程當中利用高硒分壓創造出有序缺陷化合物,使其促進鎵成分擴散,其次,為了改善有序化合物於背電極處形成電洞阻礙層,我們藉由銅鎵銫靶額外添加銫元素於銅銦鎵硒中抑制其成長,最後,我們致力於藉由設計的前驅層結構創造銀成分梯度,使其表面能隙增加並且促進晶粒成長,其中我們發現銀成分會促進表面形成有序化合物並形成反轉層以及藉由形成缺陷化合物抑制反位缺陷,我們並且討論有序化合物的形成機制以及鉀元素增加載子濃度於銀合金之銅銦鎵硒太陽的機制,最終我們達到超過19%的元件最高轉換效率,此為透過硒粉硒化的最高轉換效率,我們認為我們提出的方法能容易的被現今製成技術所使用。
Cu(In,Ga)Se2 (CIGS) solar cells has been regarded as the candidate for next generation solar cells due to their flexibility, high absorption coefficient, tunable band structure and direct bandgap, which can be developed into several wide ranging application such as bifacial solar cells, tandem solar cells and flexible solar cells. However, the manufacturing cost of CIGS solar cells are significantly higher than existing Si-based solar cells, making CIGS rarely use in commercial module even though the cell efficiency is higher than other thin film solar cells. The sequential process, which involves sputtering the precursor first and then selenized under high temperature annealing, is a widely approach to meet the mass production purposes and industrial aspects. Although the sequential process was proposed over 30 years ago, the progress of sequential process is slow and limited by the open circuit voltage. In this dissertation, we aim to introduce a key concept and technology to address the uncontrollable Ga grading, undesirable secondary phase at CIGS/Mo, and insufficient grain growth. First, an ordered vacancy compound (OVC) can be formed during the early stage of the selenization by high selenium pressure, which promotes Ga diffusion and modifies Ga grading. Second, the undesirable OVC phase at the CIGS/Mo interface can be reduced by Cs incorporation by CuGa:CsF, which further eliminates the hole barrier. Finally, we aim to form the notch band structure by Ag grading to enhance the surface bandgap and promote the grain growth by the designed precursor stacking. The incorporation of Ag also induces the OVC phase on the top surface, which is the type inversion layer and reduces the antisite defect by forming the defect complex. The mechanism, how Ag affects OVC phase, and how K affects the carrier density in Ag alloyed CIGSe were discussed by the first-principle calculation. Over 19% cell efficiency were achieved, which is the highest efficiency achieved by Se pellet. We believe that our concept can easily be adopted in the existing manufacturing process.
Abstract i
Chapter 1 1
General introduction 1
1.1 Context and purpose 1
1.2 Organization of this thesis 3
Chapter 2 5
Literature review 5
2.1Background 5
2.1.1 The operation of Cu(In,Ga)Se2 solar cells 5
2.1.2 Diode equation 6
2.1.3 Open circuit voltage 7
2.1.4 Short circuit current 8
2.1.5 Fill factor 9
2.1.6 Efficiency 9
2.1.7 Shunt resistance and series resistance 10
2.1.8 Recombination 11
2.2 The structure of Cu(In,Ga)Se2 solar cells 13
2.2.1 Substrate 14
2.2.2 Back contact 15
2.2.3 P type absorber 16
2.2.4 Buffer layer 17
2.2.5 Transparent conductive oxide (TCO) 17
2.2.6 Front contact 18
2.3 The history and key developments of Cu(In,Ga)Se2 18
2.3.1 Co-evaporation process 18
2.3.2 Sequential process 22
2.4 Design rule of the Cu(In,Ga)Se2 solar cells 26
2.4.1 Rule 1: Back surface grading should be greater than 0.5 eV to avoid the backside recombination 26
2.4.2 Rule 2: The VBM should be downshift over 0.3 eV to avoid the front surface recombination. 27
2.4.3 Rule 3: The carrier concentration should not exceed 1017cm-3 and not lower than 1015 cm-3 30
2.5 The history of alkali metal effect 30
2.6 The phase diagram of CIGSe: Chalcopyrite CIGSe phase (α-phase) and ordered vacancy compound (β-phase) 32
2.7 Ga profile in selenized CIGSe 34
2.8 Ag alloyed CIGSe solar cells 35
Chapter 3 Experiment Techniques 38
3.1 Sample preparation 38
3.1.1 Magnetron sputtering system 38
3.1.2 Selenization process 39
3.1.3 Evaporation 41
3.2 Material Characterization 42
3.2.1 Scanning electron microscopy (SEM) 42
3.2.2 Transmission electron microscopy (TEM) 43
3.2.3 X-ray diffraction (XRD) 44
3.2.4 Atomic force microscopy (AFM) 46
3.2.5 X-ray photoelectron spectroscopy (XPS) 47
3.2.6 Secondary ion mass spectroscopy (SIMS) 48
3.2.7 Raman spectroscopy 48
3.2.8 Photoluminescence (PL) and time-resolved PL spectroscopy 49
3.2.9 X-ray fluorescence (XRF) 50
3.3 Device Characterization 51
3.3.1 Current -voltage measurement 51
3.3.2 Admittance spectroscopy 51
3.3.3 External quantum efficiency 52
3.3.4 Capacitance-voltage measurement 52
Chapter 4 53
Adjusting the Ga grading by the formation of ordered vacancy compound in sequential process 53
4.1 Introduction 54
4.2 Experimental section 56
4.2.1 Device Preparation: 56
4.2.2 Characterization: 57
4.3. Results and Discussion 58
4.3.1. Benefits of K-doped precursor layer 58
4.3.2. Effects of selenium partial pressure on structure and Ga grading of CIGSe films 58
Chapter 5 80
Incorporation of Cs in selenized Cu(In,Ga)Se2 solar cells by CuGa:CsF precursor layer 80
5.1 Introduction 80
5.2 Experimental section 84
5.2.1 Fabrication of the CuGa:CsF target 84
5.2.2 Device fabrication 84
5.2.3 Characterization 85
5.3 Results and discussion 85
5.3.1 Sputtering Cs-containing precursor layer 85
5.3.2 Effects of Cs-containing precursor on CIGSe Solar Cell Performance 92
5.4 Conclusion 95
Chapter 6 96
Band engineering and defect elimination by Ag-grading in high Ag alloyed Cu(In,Ga)Se2 thin film solar cells 96
6.1 Introduction 97
6.2Experimental section 101
6.2.1 Device fabrication 101
6.2.3 Computational methods 103
6.3 Results and discussion 103
Chapter 7 128
Conclusion and outlooks 128
7.1 Conclusions 128
7.2 Suggestions for future development 129
Reference 131
[1] U. Rau and H.-W. Schock, "Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges," Applied Physics A, vol. 69, no. 2, pp. 131-147, 1999.
[2] A. Chirilă et al., "Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films," Nature materials, vol. 10, no. 11, pp. 857-861, 2011.
[3] S.-C. Yang et al., "Efficiency boost of bifacial Cu(In,Ga)Se2 thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process," Nat. Energy, pp. 1-12, 2022.
[4] T. Nakada and A. Kunioka, "Direct evidence of Cd diffusion into Cu(In,Ga)Se2 thin films during chemical-bath deposition process of CdS films," Applied Physics Letters, vol. 74, no. 17, pp. 2444-2446, 1999.
[5] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, "Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%," IEEE J. Photovolt., vol. 9, no. 6, pp. 1863-1867, 2019.
[6] V. Bermudez and A. Perez-Rodriguez, "Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up," Nat. Energy, vol. 3, no. 6, pp. 466-475, 2018.
[7] H. Hahn, G. Frank, W. Klingler, A. D. Meyer, and G. Störger, "Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur," Zeitschrift für anorganische und allgemeine Chemie, vol. 271, no. 3‐4, pp. 153-170, 1953.
[8] L. Kazmerski, F. White, and G. Morgan, "Thin‐film CuInSe2/CdS heterojunction solar cells," Applied Physics Letters, vol. 29, no. 4, pp. 268-270, 1976.
[9] R. Mickelsen, W. Chen, Y. R. Hsiao, and V. Lowe, "Polycrystalline thin-film CuInSe2/CdZnS solar cells," IEEE Transactions on Electron Devices, vol. 31, no. 5, pp. 542-546, 1984.
[10] D. Abou-Ras et al., "Innovation highway: Breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint," Thin Solid Films, vol. 633, pp. 2-12, 2017.
[11] R. Scheer and H.-W. Schock, Chalcogenide photovoltaics: physics, technologies, and thin film devices. John Wiley & Sons, 2011.
[12] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, "Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%," physica status solidi (RRL)–Rapid Research Letters, vol. 10, no. 8, pp. 583-586, 2016.
[13] V. K. Kapur, U. V. Choudary, and A. K. Chu, "Process of forming a compound semiconductive material," ed: Google Patents, 1986.
[14] C. Jensen, D. E. Tarrant, J. H. Ermer, and G. A. Pollock, "The role of gallium in CuInSe2 solar cells fabricated by a two-stage method," Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9), pp. 577-580, 1993.
[15] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, "Cd-free Cu (In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%," IEEE J. Photovolt., vol. 9, no. 6, pp. 1863-1867, 2019.
[16] T.-T. Wu et al., "Toward high efficiency and panel size 30× 40 cm2 Cu(In,Ga)Se2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature," Nano Energy, vol. 10, pp. 28-36, 2014.
[17] P. Schöppe et al., "Improved Ga grading of sequentially produced Cu(In,Ga)Se2 solar cells studied by high resolution X-ray fluorescence," Applied Physics Letters, vol. 106, no. 1, p. 013909, 2015.
[18] G. Li et al., "The influence of cracked selenium flux on CIGS thin film growth and device performance prepared by two-step selenization processes," Sol. Energ. Mat. Sol. C., vol. 139, pp. 108-114, 2015.
[19] S. Niki et al., "CIGS absorbers and processes," Prog. Photovoltaics: Res. Appl., vol. 18, no. 6, pp. 453-466, 2010.
[20] O. Cojocaru-Mirédin et al., "Intense sulphurization process can lead to superior heterojunction properties in Cu(In,Ga)(S,Se)2 thin-film solar cells," Nano Energy, vol. 89, p. 106375, 2021.
[21] T. Nishimura, S. Toki, H. Sugiura, K. Nakada, and A. Yamada, "Effect of Cu‐deficient layer formation in Cu(In,Ga)Se2 solar‐cell performance," Prog. Photovoltaics: Res. Appl., vol. 26, no. 4, pp. 291-302, 2018.
[22] A. Chirilă et al., "Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells," Nature materials, vol. 12, no. 12, pp. 1107-1111, 2013.
[23] E. Handick et al., "Potassium postdeposition treatment-induced band gap widening at Cu(In,Ga)Se2 surfaces–reason for performance leap?," ACS Appl. Mater. Interfaces, vol. 7, no. 49, pp. 27414-27420, 2015.
[24] Y.-H. Wang, L.-H. Tu, Y.-L. Chang, S.-K. Lin, T.-Y. Lin, and C.-H. Lai, "Surface Sulfurization of Cu(In,Ga)Se2 Solar Cells by Cosputtering In2S3 in the One-Step Sputtering Process," ACS APPL ENERG MATER, vol. 4, no. 10, pp. 11555-11563, 2021.
[25] Y. Sun et al., "N‐Type Surface Design for p‐Type CZTSSe Thin Film to Attain High Efficiency," Adv. Mater., vol. 33, no. 49, p. 2104330, 2021.
[26] M. Ochoa, S. Buecheler, A. N. Tiwari, and R. Carron, "Challenges and opportunities for an efficiency boost of next generation Cu(In,Ga)Se2 solar cells: prospects for a paradigm shift," Energy Environ. Sci., 10.1039/D0EE00834F vol. 13, no. 7, pp. 2047-2055, 2020.
[27] Z. K. Yuan et al., "Na‐diffusion enhanced p‐type conductivity in Cu(In,Ga)Se2: A new mechanism for efficient doping in semiconductors," Adv. Energy Mater., vol. 6, no. 24, p. 1601191, 2016.
[28] L. Kronik, D. Cahen, and H. W. Schock, "Effects of sodium on polycrystalline Cu (In, Ga) Se2 and its solar cell performance," Adv. Mater., vol. 10, no. 1, pp. 31-36, 1998.
[29] J. S. Park, Z. Dong, S. Kim, and J. H. Perepezko, "CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction," J. Appl. Phys., vol. 87, no. 8, pp. 3683-3690, 2000.
[30] S. S. Schmidt et al., "Adjusting the Ga grading during fast atmospheric processing of Cu(In,Ga)Se2 solar cell absorber layers using elemental selenium vapor," Prog. Photovoltaics: Res. Appl., vol. 25, no. 5, pp. 341-357, 2017.
[31] Y. Zhao et al., "High efficiency CIGS solar cells by bulk defect passivation through Ag substituting strategy," ACS Appl. Mater. Interfaces, vol. 12, no. 11, pp. 12717-12726, 2020.
[32] J. Keller et al., "Wide‐gap (Ag,Cu)(In,Ga)Se2 solar cells with different buffer materials—A path to a better heterojunction," Prog. Photovoltaics: Res. Appl., vol. 28, no. 4, pp. 237-250, 2020.
[33] S. Essig, S. Paetel, T. M. Friedlmeier, and M. Powalla, "Challenges in the deposition of (Ag,Cu)(In,Ga)Se2 absorber layers for thin-film solar cells," Journal of Physics: Materials, vol. 4, no. 2, p. 024003, 2021.
[34] K. V. Sopiha et al., "Thermodynamic stability, phase separation and Ag grading in (Ag,Cu)(In,Ga) Se2 solar absorbers," J. Mater. Chem. A, vol. 8, no. 17, pp. 8740-8751, 2020.
[35] H. Aboulfadl et al., "Alkali Dispersion in (Ag, Cu)(In,Ga)Se2 Thin Film Solar Cells—Insight from Theory and Experiment," ACS Appl. Mater. Interfaces, vol. 13, no. 6, pp. 7188-7199, 2021.
[36] T. Nishimura, S. Toki, H. Sugiura, K. Nakada, and A. Yamada, "Effect of Cu‐deficient layer formation in Cu(In, Ga)Se2 solar‐cell performance," Prog. Photovoltaics: Res. Appl., vol. 26, no. 4, pp. 291-302, 2018.
[37] K. G. Xu, "Plasma sheath behavior and ionic wind effect in electric field modified flames," Combustion and Flame, vol. 161, no. 6, pp. 1678-1686, 2014.
[38] J. H. Han et al., "Actual partial pressure of Se vapor in a closed selenization system: quantitative estimation and impact on solution-processed chalcogenide thin-film solar cells," J. Mater. Chem. A, vol. 4, no. 17, pp. 6319-6331, 2016.
[39] M. Ezzahmouly et al., "Micro-computed tomographic and SEM study of porous bioceramics using an adaptive method based on the mathematical morphological operations," Heliyon, vol. 5, no. 12, p. e02557, 2019.
[40] R. Garcıa and R. Perez, "Dynamic atomic force microscopy methods," Surface science reports, vol. 47, no. 6-8, pp. 197-301, 2002.
[41] D. Krix, "Non-adiabatic effects in the oxidation of alkali metals," Duisburg, Essen, Univ., Diss., 2011, 2010.
[42] N. Xia, C. J. May, S. L. McArthur, and D. G. Castner, "Time-of-flight secondary ion mass spectrometry analysis of conformational changes in adsorbed protein films," Langmuir, vol. 18, no. 10, pp. 4090-4097, 2002.
[43] R. Caballero, C. Guillén, M. T. Gutiérrez, and C. A. Kaufmann, "CuIn1−xGaxSe2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers," Prog. Photovoltaics: Res. Appl., vol. 14, no. 2, pp. 145-153, 2006.
[44] K.-H. Liao, C.-Y. Su, and Y.-T. Ding, "Effects of Ga accumulation on the microstructure of Cu(In1−x,Gax)Se2 thin films during selenization," J. Alloy Compd., vol. 581, pp. 250-256, 2013.
[45] T. Kato, J.-L. Wu, Y. Hirai, H. Sugimoto, and V. Bermudez, "Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In,Ga)(Se,S)2," IEEE J. Photovolt., vol. 9, no. 1, pp. 325-330, 2019.
[46] W. Witte et al., "Gallium gradients in Cu(In,Ga)Se2 thin‐film solar cells," Prog. Photovoltaics: Res. Appl., vol. 23, no. 6, pp. 717-733, 2015.
[47] D. Colombara, K. Conley, M. Malitckaya, H.-P. Komsa, and M. J. Puska, "The fox and the hound: in-depth and in-grain Na doping and Ga grading in Cu(In,Ga)Se2 solar cells," J. Mater. Chem. A, 10.1039/D0TA01103G vol. 8, no. 14, pp. 6471-6479, 2020.
[48] D. Colombara et al., "Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers," Nat. Commun., vol. 9, no. 1, pp. 1-12, 2018.
[49] C.-H. Cai et al., "Interplay between potassium doping and bandgap profiling in selenized Cu(In,Ga)Se2 solar cells: A functional CuGa: KF surface precursor layer," Nano Energy, vol. 47, pp. 393-400, 2018.
[50] S. Nishiwaki, T. Satoh, Y. Hashimoto, T. Negami, and T. Wada, "Preparation of Cu(In,Ga)Se2 thin films at low substrate temperatures," J. Mater. Res., vol. 16, no. 2, pp. 394-399, 2001.
[51] T.-T. Wu et al., "Toward high efficiency and panel size 30×40cm2 Cu(In,Ga)Se2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature," Nano Energy, vol. 10, pp. 28-36, 2014.
[52] J.-K. Sim, K. Ashok, and C.-R. Lee, "Formation of CIGS thin absorption layer by sequential sputtering of CuGa/In/CuGa precursor on Mo/SLG with post selenization," Met. Mater. Int., vol. 19, no. 2, pp. 303-308, 2013.
[53] J. Bi et al., "Influence of Cu on Ga diffusion during post-selenizing the electrodeposited Cu/In/Ga metallic precursor process," Sol. Energ. Mat. Sol. C., vol. 182, pp. 92-97, 2018.
[54] S. S. Schmidt et al., "Adjusting the Ga grading during fast atmospheric processing of Cu(In,Ga)Se2 solar cell absorber layers using elemental selenium vapor," Prog. Photovoltaics: Res. Appl., vol. 25, no. 5, pp. 341-357, 2017.
[55] Y. J. Song, J.-Y. Kang, G. Y. Baek, J. A. Bae, S. H. Yang, and C.-W. Jeon, "Two-step selenization using nozzle free Se shower for Cu(In,Ga)Se2 thin film solar cell," Prog. Photovoltaics: Res. Appl., vol. 26, no. 3, pp. 223-233, 2018.
[56] K. Kim, G. M. Hanket, T. Huynh, and W. N. Shafarman, "Three-step H2Se/Ar/H2S reaction of Cu-In-Ga precursors for controlled composition and adhesion of Cu(In,Ga)(Se,S)2 thin films," J. Appl. Phys., vol. 111, no. 8, p. 083710, 2012.
[57] H. Rodriguez‐Alvarez et al., "Formation of CuInSe2 and CuGaSe2 Thin‐Films Deposited by Three-Stage Thermal Co‐Evaporation: A Real‐Time X‐Ray Diffraction and Fluorescence Study," Adv. Energy Mater., vol. 3, no. 10, pp. 1381-1387, 2013.
[58] R. Caballero, C. A. Kaufmann, V. Efimova, T. Rissom, V. Hoffmann, and H. W. Schock, "Investigation of Cu(In,Ga)Se2 thin-film formation during the multi-stage co-evaporation process," Prog. Photovoltaics: Res. Appl., vol. 21, no. 1, pp. 30-46, 2013.
[59] Y. Nagoya, K. Kushiya, M. Tachiyuki, and O. Yamase, "Role of incorporated sulfur into the surface of Cu(In,Ga)Se2 thin-film absorber," Sol. Energ. Mat. Sol. C., vol. 67, no. 1, pp. 247-253, 2001.
[60] G. Li et al., "The influence of cracked selenium flux on CIGS thin film growth and device performance prepared by two-step selenization processes," Sol. Energ. Mat. Sol. C., vol. 139, pp. 108-114, 2015.
[61] J. H. Greenberg, V. A. Borjakova, and V. F. Shevelkov, "Thermodynamic properties of In2Se," J. Chem. Thermodyn., vol. 5, no. 2, pp. 233-237, 1973.
[62] R. Mainz et al., "Time-resolved investigation of Cu(In,Ga)Se2 growth and Ga gradient formation during fast selenisation of metallic precursors," Prog. Photovoltaics: Res. Appl., vol. 23, no. 9, pp. 1131-1143, 2015.
[63] D. Lee et al., "Effects of the Cu/(Ga+In) ratio on the bulk and interface properties of Cu(In,Ga)(S,Se)2 solar cells," Sol. Energ. Mat. Sol. C., vol. 149, pp. 195-203, 2016.
[64] S. S. Hegedus and W. N. Shafarman, "Thin‐film solar cells: device measurements and analysis," Prog. Photovoltaics: Res. Appl., vol. 12, no. 2‐3, pp. 155-176, 2004.
[65] X. Zhang, M. Kobayashi, and A. Yamada, "Comparison of Ag(In,Ga)Se2/Mo and Cu(In,Ga)Se2/Mo interfaces in solar cells," ACS Appl. Mater. Interfaces, vol. 9, no. 19, pp. 16215-16220, 2017.
[66] J. Ramanujam and U. P. Singh, "Copper indium gallium selenide based solar cells–a review," Energy Environ. Sci., vol. 10, no. 6, pp. 1306-1319, 2017.
[67] L. Kronik, D. Cahen, and H. W. Schock, "Effects of sodium on polycrystalline Cu(In,Ga)Se2 and its solar cell performance," Adv. Mater., vol. 10, no. 1, pp. 31-36, 1998.
[68] T.-T. Wu et al., "30×40cm2 flexible Cu(In,Ga)Se2 solar panel by low temperature plasma enhanced selenization process," Nano Energy, vol. 24, pp. 45-55, 2016.
[69] W. Witte et al., "Gallium gradients in Cu(In,Ga)Se2 thin‐film solar cells," Prog. Photovoltaics: Res. Appl., vol. 23, no. 6, pp. 717-733, 2015.
[70] L.-H. Tu, C.-H. Cai, and C.-H. Lai, "Tuning Ga Grading in Selenized Cu(In,Ga)Se2 Solar Cells by Formation of Ordered Vacancy Compound," Solar RRL, vol. 5, no. 3, p. 2000626, 2021.
[71] J. Li et al., "Rear interface modification for efficient Cu(In,Ga)Se2 solar cells processed with metallic precursors and low-cost Se vapor," Sol. Energ. Mat. Sol. C., vol. 186, pp. 243-253, 2018.
[72] J. Keller, L. Stolt, K. V. Sopiha, J. K. Larsen, L. Riekehr, and M. Edoff, "On the Paramount Role of Absorber Stoichiometry in (Ag,Cu)(In,Ga)Se2 Wide‐Gap Solar Cells," Solar RRL, vol. 4, no. 12, p. 2000508, 2020.
[73] D. Rudmann et al., "Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation," Applied Physics Letters, vol. 84, no. 7, pp. 1129-1131, 2004.
[74] S. Siebentritt et al., "Heavy Alkali Treatment of Cu(In,Ga)Se2 Solar Cells: Surface versus Bulk Effects," Adv. Energy Mater., p. 1903752, 2020.
[75] T.-Y. Lin et al., "Alkali-induced grain boundary reconstruction on Cu(In,Ga)Se2 thin film solar cells using cesium fluoride post deposition treatment," Nano Energy, vol. 68, p. 104299, 2020.
[76] F. Pianezzi et al., "Defect formation in Cu(In,Ga)Se2 thin films due to the presence of potassium during growth by low temperature co-evaporation process," J. Appl. Phys., vol. 114, no. 19, p. 194508, 2013.
[77] H. Lee et al., "Passivation of deep-level defects by cesium fluoride post-deposition treatment for improved device performance of Cu(In,Ga)Se2 solar cells," ACS Appl. Mater. Interfaces, vol. 11, no. 39, pp. 35653-35660, 2019.
[78] J. Nam et al., "Achievement of 17.9% efficiency in 30× 30 cm2 Cu (In,Ga)(Se,S)2 solar cell sub‐module by sulfurization after selenization with Cd‐free buffer," Prog. Photovoltaics: Res. Appl., vol. 24, no. 2, pp. 175-182, 2016.
[79] M. Malitckaya, H.-P. Komsa, V. Havu, and M. Puska, "Effect of alkali metal atom doping on the CuInSe2-based solar cell absorber," The Journal of Physical Chemistry C, vol. 121, no. 29, pp. 15516-15528, 2017.
[80] R. Fonoll‐Rubio et al., "Insights into the Effects of RbF‐Post‐Deposition Treatments on the Absorber Surface of High Efficiency Cu(In,Ga)Se2 Solar Cells and Development of Analytical and Machine Learning Process Monitoring Methodologies Based on Combinatorial Analysis," Adv. Energy Mater., p. 2103163, 2022.
[81] S. Niki et al., "CIGS absorbers and processes," Prog. Photovoltaics: Res. Appl., vol. 18, no. 6, pp. 453-466, 2010.
[82] C.-H. Cai et al., "Interplay between potassium doping and bandgap profiling in selenized Cu (In, Ga) Se2 solar cells: A functional CuGa: KF surface precursor layer," Nano Energy, vol. 47, pp. 393-400, 2018.
[83] S. S. Schmidt et al., "Adjusting the Ga grading during fast atmospheric processing of Cu (In, Ga) Se2 solar cell absorber layers using elemental selenium vapor," Prog. Photovoltaics: Res. Appl., vol. 25, no. 5, pp. 341-357, 2017.
[84] R. Mainz et al., "Time‐resolved investigation of Cu(In, Ga)Se2 growth and Ga gradient formation during fast selenisation of metallic precursors," Prog. Photovoltaics: Res. Appl., vol. 23, no. 9, pp. 1131-1143, 2015.
[85] Y. Zhao et al., "Controllable formation of ordered vacancy compound for high efficiency solution processed Cu(In,Ga)Se2 solar cells," Advanced Functional Materials, vol. 31, no. 10, p. 2007928, 2021.
[86] J. Jiang et al., "10.3% efficient CuIn(S, Se)2 solar cells from DMF molecular solution with the absorber selenized under high argon pressure," Solar RRL, vol. 2, no. 6, p. 1800044, 2018.
[87] J. Jiang et al., "Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution," Nano Energy, vol. 69, p. 104438, 2020.
[88] L. M. Mansfield et al., "Enhanced Performance in Cu(In,Ga)Se2 Solar Cells Fabricated by the Two-Step Selenization Process With a Potassium Fluoride Postdeposition Treatment," IEEE J. Photovolt., vol. 4, no. 6, pp. 1650-1654, 2014.
[89] K. Kim, J. W. Park, J. S. Yoo, J.-s. Cho, H.-D. Lee, and J. H. Yun, "Ag incorporation in low-temperature grown Cu(In,Ga)Se2 solar cells using Ag precursor layers," Sol. Energ. Mat. Sol. C., vol. 146, pp. 114-120, 2016.
[90] C. Wang et al., "Effects of silver-doping on properties of Cu(In, Ga)Se2 films prepared by CuInGa precursors," Journal of Energy Chemistry, vol. 66, pp. 218-225, 2022.
[91] B. Kim et al., "Boosting solar cell performance via centrally localized Ag in solution-processed Cu(In,Ga)(S,Se)2 thin film solar cells," ACS Appl. Mater. Interfaces, vol. 12, no. 32, pp. 36082-36091, 2020.
[92] S.-C. Yang et al., "Silver‐Promoted High‐Performance (Ag,Cu)(In, Ga)Se2 Thin‐Film Solar Cells Grown at Very Low Temperature," Solar RRL, vol. 5, no. 5, p. 2100108, 2021.
[93] M. Edoff et al., "High V oc in (Cu,Ag)(In, Ga)Se2 Solar Cells," IEEE J. Photovolt., vol. 7, no. 6, pp. 1789-1794, 2017.
[94] A. M. Bothwell et al., "Large‐Area (Ag,Cu)(In, Ga)Se2 Thin‐Film Solar Cells with Increased Bandgap and Reduced Voltage Losses Realized with Bulk Defect Reduction and Front‐Grading of the Absorber Bandgap," Solar RRL, vol. 6, no. 8, p. 2200230, 2022.
[95] J. I. Deitz et al., "Direct Nanoscale Characterization of Deep Levels in (Ag,Cu)(In,Ga)Se2 Using Electron Energy‐Loss Spectroscopy in the Scanning Transmission Electron Microscope," Adv. Energy Mater., vol. 9, no. 35, p. 1901612, 2019.
[96] L. Chen, S. Soltanmohammad, J. Lee, B. E. McCandless, and W. N. Shafarman, "Secondary phase formation in (Ag,Cu)(In, Ga)Se2 thin films grown by three-stage co-evaporation," Sol. Energ. Mat. Sol. C., vol. 166, pp. 18-26, 2017.
[97] K. Yamada, N. Hoshino, and T. Nakada, "Crystallographic and electrical properties of wide gap Ag(In1− x, Gax) Se2 thin films and solar cells," Science and Technology of Advanced Materials, vol. 7, no. 1, pp. 42-45, 2006.
[98] J. Keller, H. Aboulfadl, L. Stolt, O. Donzel-Gargand, and M. Edoff, "Rubidium Fluoride Absorber Treatment for Wide‐Gap (Ag,Cu)(In, Ga)Se2 Solar Cells," Solar RRL, p. 2200044, 2022.
[99] G. Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method," Physical review b, vol. 59, no. 3, p. 1758, 1999.
[100] P. E. Blöchl, "Projector augmented-wave method," Physical review B, vol. 50, no. 24, p. 17953, 1994.
[101] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical review letters, vol. 77, no. 18, p. 3865, 1996.
[102] A. Jain et al., "Commentary: The Materials Project: A materials genome approach to accelerating materials innovation," APL materials, vol. 1, no. 1, p. 011002, 2013.
[103] T. Feurer et al., "Efficiency improvement of near‐stoichiometric CuInSe2 solar cells for application in tandem devices," Adv. Energy Mater., vol. 9, no. 35, p. 1901428, 2019.
[104] Q. Gao et al., "Over 16% Efficient Solution‐Processed Cu (In,Ga)Se2 Solar Cells via Incorporation of Copper‐Rich Precursor Film," Small, vol. 18, no. 39, p. 2203443, 2022.
[105] X. Zhang, A. Yamada, and M. Kobayashi, "High‐temperature fabrication of Ag(In,Ga)Se2 thin films for applications in solar cells," physica status solidi (a), vol. 214, no. 10, p. 1700042, 2017.
[106] C.-H. Chung, K.-H. Hong, D.-K. Lee, J. H. Yun, and Y. Yang, "Ordered vacancy compound formation by controlling element redistribution in molecular-level precursor solution processed CuInSe2 thin films," Chem. Mater., vol. 27, no. 21, pp. 7244-7247, 2015.
[107] T. Walter, R. Herberholz, C. Müller, and H. Schock, "Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions," J. Appl. Phys., vol. 80, no. 8, pp. 4411-4420, 1996.
[108] F. Pianezzi et al., "Influence of Ni and Cr impurities on the electronic properties of Cu(In,Ga)Se2 thin film solar cells," Prog. Photovoltaics: Res. Appl., vol. 23, no. 7, pp. 892-900, 2015.
[109] R. Caballero et al., "Influence of Na on Cu(In,Ga)Se2 solar cells grown on polyimide substrates at low temperature: Impact on the Cu(In,Ga)Se2/Mo interface," Applied Physics Letters, vol. 96, no. 9, p. 092104, 2010.
[110] J. Keller, L. Stolt, K. V. Sopiha, J. K. Larsen, L. Riekehr, and M. Edoff, "On the Paramount Role of Absorber Stoichiometry in (Ag, Cu)(In, Ga) Se2 Wide‐Gap Solar Cells," Solar RRL, vol. 4, no. 12, p. 2000508, 2020.
[111] W. Paszkowicz, R. Lewandowska, and R. Bacewicz, "Rietveld refinement for CuInSe2 and CuIn3Se5," J. Alloy Compd., vol. 362, no. 1-2, pp. 241-247, 2004.
[112] X.-D. Chen, L. Chen, Q.-Q. Sun, P. Zhou, and D. W. Zhang, "Hybrid density functional theory study of Cu(In1− xGax)Se2 band structure for solar cell application," AIP Advances, vol. 4, no. 8, p. 087118, 2014.
[113] K. Timmo et al., "Cu(In,Ga)Se2 monograin powders with different Ga content for solar cells," Solar Energy, vol. 176, pp. 648-655, 2018.
[114] T. Maeda, W. Gong, and T. Wada, "Crystallographic and optical properties and band structures of CuInSe2, CuIn3Se5, and CuIn5Se8 phases in Cu-poor Cu2Se–In2Se3 pseudo-binary system," Japanese Journal of Applied Physics, vol. 55, no. 4S, p. 04ES15, 2016.
[115] C. Persson, Y.-J. Zhao, S. Lany, and A. Zunger, "n-type doping of CuInSe2 and CuGaSe2," Physical Review B, vol. 72, no. 3, p. 035211, 2005.
[116] J. Pohl and K. Albe, "Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory," Physical Review B, vol. 87, no. 24, p. 245203, 2013.
[117] C. Domain, S. Laribi, S. Taunier, and J. Guillemoles, "Ab initio calculation of intrinsic point defects in CuInSe2," Journal of Physics and Chemistry of Solids, vol. 64, no. 9-10, pp. 1657-1663, 2003.
[118] S.-k. Lin, C.-k. Yeh, B. Puchala, Y.-L. Lee, and D. Morgan, "Ab initio energetics of charge compensating point defects: A case study on MgO," Computational materials science, vol. 73, pp. 41-55, 2013.
[119] P.-C. Tsai et al., "Ab initio phase stability and electronic conductivity of the doped-Li4Ti5O12 anode for Li-ion batteries," Acta Materialia, vol. 175, pp. 196-205, 2019.
[120] M. Ihrig et al., "Study of LiCoO2/Li7La3Zr2O12: Ta Interface Degradation in All-Solid-State Lithium Batteries," ACS Appl. Mater. Interfaces, vol. 14, no. 9, pp. 11288-11299, 2022.
[121] Chih-Long Tsai et al., "Instability of Ga-substituted Li7La3Zr2O12 toward metallic Li," J. Mater. Chem. A, 2022.

(此全文20280702後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *