帳號:guest(13.58.193.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張淑華
作者(外文):Chang, Shu-Hua
論文名稱(中文):溶解虛擬實驗室的發展及其對學生科學學習成就、概念理解和科學態度的影響
論文名稱(外文):Developing and evaluating the effects of virtual laboratory of dissolution on students’ achievement,conceptual understanding and attitudes toward science
指導教授(中文):王姿陵
唐文華
指導教授(外文):Wang, Tzu-Ling
Tarng, Wen Hua
口試委員(中文):盧秀琴
盧玉玲
口試委員(外文):Lu, Chow-Chin
Lu, Yu-Ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所碩士在職專班
學號:106199510
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:107
中文關鍵詞:虛擬實境擴增實境溶解科學學習成就概念理解科學學習態度
外文關鍵詞:virtual realityaugmented realitydissolutionscience achievementconceptual understandingscience attitudes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:201
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目的是利用虛擬實境、擴增實境技術開發「溶解虛擬實驗室」,融入粒子模型以協助學生理解抽象困難的概念,學習系統發展完成後,將評估學生在科學學習成就、概念理解及科學學習態度的影響。
本系統以「溶解」單元為學習內容包含兩個主題「物質的溶解」、「可以溶解的量」,學習系統的操作流程:先操作「虛擬實驗」或「擴增實驗」,隨後接著「概念回顧」以統整與澄清科學概念;最後進行「測驗挑戰」以檢視學習成果,若學生在「測驗挑戰」中有迷思概念,將會再次進行該實驗的操作,立即性的回饋有助學生概念再次澄清。
本研究對象來自新竹縣一所小學國小三年級四個班級,採用準實驗設計,其中兩班57人為實驗組,進行虛擬實驗教學;另兩班56人為對照組,進行一般教學,教學時間為八節課共320分鐘。研究工具包含「對本系統的滿意度」、「物質溶解成就測驗」、「溶解二階診斷測驗」和「科學學習態度量表」。資料分析方法包含敘述統計、單因子共變數分析以及卡方檢定。
本研究的重要發現如下:
一、 學生使用「溶解虛擬實驗室」在「系統內容」、「介面設計」和「系統操作感想」三個向度皆呈現高滿意度,整體感受性亦呈現高滿意度。
二、使用「溶解虛擬實驗室」對學生在「溶解」單元的科學學習成就顯著優於一般教學,也對此單元相關概念如:「可溶解的物質與現象」、「定溫、定量的水可以溶解食鹽的量」、「定溫、定量的水可以溶解食鹽、砂糖的量是否相同?」、「不同溫度、不同水量可溶解食鹽的量」具有正面的成效。
三、使用「溶解虛擬實驗室」有助學生在「溶解」單元整體概念理解,也能有助此單元相關概念理解如:「食鹽溶解後,水面高度變化」、「不同的物質在同溫、同水量會有不同的溶解量」、「不管有沒有攪拌,放了一段時間,糖或鹽還是會溶解」、「溫度升高,可以增加糖或鹽在水中的溶解量」。
四、使用「溶解虛擬實驗室」對學生科學態度顯著優於一般教學。
The purpose of this study was to develop “virtual laboratory of dissolution ” via VR and AR technologies while blending with particle model to help students understand difficult and abstract concepts. After the development of learning system is completed, the impact on students’ science achievement, conceptual understanding, and science attitudes will be evaluated.
The topic of this system is “dissolution”, including two concepts: “dissolution of substance” and “soluble amount”. The teaching procedure of the learning system starts from the operation of “VR experiment” or “AR experiment”, followed by the “concept review” to summary and clarify the science concepts; lastly, “testing challenge” will be conducted to review the concepts to be learned. If students feel confused during the “testing challenge”, they can repcat the experiment immediately.
This study included four classes from an elementary school with quasi-experimental design. The experimental group included 57 students from two classes with VR experiment teaching, while the control group included of 56 students from two other classes with regular teaching. There are a total of 320 minutes for teaching across eight sessions. The research instruments included “degree of satisfaction with this system survey”, “substance dissolution achievement test”, “two-tier dissolution diagnosis test” , and “science attitudes scale”.
The main findings of this study are as follows:
1. Students who used virtual laboratory had high scores in the three dimensions: “system content”, “interface design”, and “impression of system operation” as well as the overall scale.
2. Students using “virtual laboratory of dissolution” achieved better science achievement of “soluble substances and phenomena”, “the amount of salt soluble in a fixed amount of water at a constant temperature”, “are the amounts of salt and sugar soluble in a fixed amount of water at a constant temperature identical to each other?”, and “the amount of salt soluble in different amounts of water at different temperatures, and dissolution than students receiving regular teaching.
3. Students using “virtual laboratory of dissolution” achieved better conceptual understanding of “the change of water level after dissolution of salt”, “different substances will have different soluble amounts at the same temperature and amount of water”, “salt or sugar will be dissolved after a period of time with or without stirring”, and “the soluble amount of sugar or salt will be increased by increasing the temperature”than students receiving regular teaching.
4. Students using “virtual laboratory of dissolution” achieved more positive science attitudes than students receiving regular teaching.
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的與問題 2
第三節 研究範圍與限制 3
第四節 名詞解釋 4
第二章 文獻探討 5
第一節 溶解的迷思概念相關研究 5
第二節 虛擬實境 7
第三節 擴增實境 10
第四節 虛擬實境及擴增實境的優勢 11
第五節 虛擬實境及擴增實境應用的實證研究 14
第三章 系統開發與設計 22
第一節 系統開發環境與工具 22
第二節 系統架構 23
第三節 系統開發流程 24
第四節 系統內容與操作流程 42
第四章 虛擬實驗系統學習成效評估 62
第一節 研究對象 62
第二節 教學教材內容 63
第三節 教學研究與設計 70
第四節 研究工具 72
第五節 資料收集與分析 79
第六節「溶解虛擬實驗室」學習成效評估 81
第五章 結論與建議 97
參考文獻 100
一、中文文獻 100
二、英文文獻 102
附錄ㄧ 系統滿意度調查表 106
附錄二 溶解成就測驗 107
附錄三 溶解概念二階診斷測驗 111
附錄四 對自然課的態度量表 114
一、中文文獻
文爾雅(2018)。物質受熱變化虛擬實驗室的發展及其對學生科學學習成就、科學態度和認知負荷的影響。國立新竹教育大學數理教育所碩士論文,新竹市。
王秉程(2011)。應用擴增實境於兒童教育用品設計對海洋教育學習興趣影響之研究─以國小中年級學生為例。國立臺北教育大學數位科技設計學所碩士論文,臺北市。
王美芬、熊召弟(1995)。國民小學自然科教材教法。臺北市:心理出版社。
丘堯(2009)。應用3D運算技術提升氣象科學教學成效之研究。中華印刷科技年報,123-137。
余民寧(2004)。教育測驗與評量:成就測驗與教學評量。臺北市:心理。
吳沂木(2004)。資訊科技融入自然與生活科技的3D虛擬實境教學之探究-以電與磁教學為例。國立台南大學自然科學教育研究所未出版碩士論文,台南市。
吳沂木(2004)。資訊科技融入自然與生活科技的3D虛擬實境教學之探究-以電與磁教學為例。國立台南大學自然科學教育研究所碩士論文,臺南市。
李淑玲(2017)。虛擬實境體感互動遊戲在早期療育之應用。輔具之友,41,21-26。
李莘怡(2006)。溶解迷思概念之概念改變研究。國立新竹台中教育大學科學教育學系碩士論文,台中市。
沈潔華(2005)。以虛擬實境發展國小地球運動課程之設計與研究。國立中央大學網路學習科技研究所碩士論文,桃園市。
林志勇、黃維信、宋文旭、許峻嘉(2005)。認識虛擬實境。臺北市:全華。
邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
邱瑞怡(2008)。探究不同電腦自我效能國小學童在虛擬數位學習環境中的學習情形研究。國立新竹教育大學教育學系碩士論文,新竹市。
南一書局(2020)。自然與生活科技課本:第三冊至第十冊。臺北市:南一書局。
許良榮(2002)。科學概念學習研究(Ⅱ)-化學科-子計畫四:中小學生對於物質化學性質的分類概念發展之研究(Ⅱ)。行政院國家科學委員會專題研究計畫成果報告(NSC-90-2511-S142-004),未出版。
許良榮、彭煜堯(2002)。中小學生對於物質化學性質之分類的迷思概念-以「溶解」為例。發表於中華民國第三屆化學教育學術研討會(202-214頁)。國立彰化師範大學科學教育研究所。
許良榮、廖哲政(2009)。科學語言遊戲對概念改變之研究:以溶解為例。科學教育學刊,12(3),265-287。
許良榮、劉政華(2004)。中小學生之溶解概念的形成與發展。科學教育學刊,12 (3),265-287。
許良榮、劉政華(2004)。中小學生之溶解概念的形成與發展。科學教育學刊,21(3),265-287。
郭重吉(1988)。從認知的觀點探討自然科學的學習。教育學院學報,13,351-379。
陳淮璋、黃萬居、賴文榮(2002)。國小學童對水溶液概念的認知與迷思概念之初探。科學教育研究與發展,29,1-16。
楊家興(1995)。情境教學理論與超媒體學習環境。教學科技與媒體,22,40-48。
溫嘉榮、施文玲(2003)。從網路學習理論觀點談教師在科技變革中的因應之道。資訊與教育,91,90-99。
歐滄和(2002)。教育測驗與評量。臺北:心理。
蔡秉昆(2011)。3D虛擬實境繪本電子書輔助月亮迷思概念課程學習效益之研究。國立臺中教育大學數位內容科技學所碩士論文,台中市。
蔡秉宸、靳知勤(2004)。藉情境學習提昇民眾科學素養:以科學博物館教育為例。博物館學季刊,18(2),129-140。
鄭一亭(2004)。國小學童對水溶液的迷思概念類型與成因之研究。臺北市立師範學院科學教育研究所碩士論文,臺北市。
鄭仁傑(2010)。虛擬實驗室建構之研究-以大學普物年頓第二運動定律為例。國立中央大學網路科技研究所碩士論文,桃園市。
盧巧昀、高凱玲、康仕仲、李天浩、賴進松(2010)。虛擬實驗儀器系統化製作步驟-以虛擬水利實驗為例。資訊科技與應用期刊,4(2),59-65。
賴崇閔、黃秀美、廖述盛、黃雯雯(2009)。3D虛擬實境應用於醫學教育接受度之研究。教育心理學報,40(3),341-362。
謝旻儕、林語瑄(2017)。虛擬實境與擴增實境在醫護實務與教育之應用。護理雜誌,64(6),12-18。
簡美容(2001)。國小學童對溶解相關概念認知之研究。國立台北師範學院數理教育研究所碩士論文,臺北市。
簡淑真、熊召弟、陳淑芳(2006)。幼兒對溶解現象詮釋之分析。台灣師範大學(主編),中華民國第22屆科學教育學術研討會,756-762。


二、英文文獻
Ausburn, F. B., Ausburn, L. J., Cooper, J., Kroutter, P., & Sammons, G. (2007). Virtual reality technology: Current status, applications, and directions for education research. OATE Journal: Oklahoma Association of Teacher Education, 11, 7-14.
Ausburn, L. J., & Ausburn, F. B. (2004). Desktop virtual reality: A powerful new technology for teaching and research in industrial teacher education. Journal of Industrial Teacher Education, 41(4), 33-58.
Azuma, R., (1997) "A survey of augmented reality". Presence-Teleoperators and Virtual Environments, 6(4), 355-385.
Azuma, R.T. (1997). A survey of augmented reality. In presence: Teleoperators and Virtual Environments 6(4), 355-385.
Blanco A. & Prieto T., (1997). Pupils’ views on how stirring and temperature affect the dissolution of a solid in a liquid: A cross-age study (12–18). International Journal of Science Education, 19, 303–315.
Bower M, Howe C, McCredie, Robinson A., & Grover D. (2014) Augmented reality in education-cases, places and potentials. Educational Media International, 51(1), 1–15.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-41.
Brown, R. D. (2001). Welcome to the world of virtual reality. Retrieved March 3, 2006, from http://www.crd.rea.ac.uk/staff/richard/vr.html.
Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology (2nd ed.). Hoboken, NJ: Wiley-Interscience.
Bursztyn, N., Shelton, B., Walker, A., & Pederson, J. (2017). Increasing undergraduate interest to learn geoscience with GPS-based augmented reality field trips on students’ Own smartphones. GSA Today, 27(6), 4-10.
Byrne, C. (1996). Water on tap: The use of virtual reality as an educational tool (Unpublished doctoral dissertation). University of Washington, Seattle, Washington.
Chang. K. E., Chang, C. T., Hou, H. T., Sung, Y. T., Chao, H. L., & Lee, C. M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computer & Education, 71, 185-197.
Chen, C. H., Yang, J. C., Shen, S. & Jeng, M. C. (2007). A desktop virtual reality earth motion system in astronomy education. Educational Technology & Society, 10(3), 289-304.
Chen, S., Chang, W. H., Lai, C. H., & Tsai, C. Y. (2014). A comparison of students’ approaches to inquiry, conceptual learning, and attitudes in simulation-based and microcomputer-based laboratories. Science Education, 98(5), 905-935.
Cheng, K. H., & Tsai, C. C. (2012). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449-462.
Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. The Journal of the Learning Sciences,14, 161-199.
Chiang, T. H. C., Yang, S. J. H. & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Educational Technology & Society, 17(4), 352-365.
Cuendet, S., Bonnard, Q., Do-Lenh, S., Dillenbourg. P. (2013). Designing augmented reality for the classroom. Computer and Education, 65, 557-569.
Dalgarno, B., & Hedberg, J. (2001). 3D learning environments in tertiary education. In Meeting At the Crossroads (pp.33-36). BMU, Melbourne: University of Melbourne for Computers in Learning in Tertiary Education.
Dalgarno, B., & Lee, M. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1), 10-32.
Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66-69.
Dunleavy, M., Dede, C., & Mitchell, R. (2016). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18(1), 7-22.
Enyedy, N., Danish, J. A. & Deliema, D. (2015). Constructing liminal blends in a collaborative augmented-reality learning environment. International Journal of Computer-Supported Collaborative Learning, 10, 7-34.
Enyedy, N., Danish, J. A., DeLiema, D. (2015). Constructing liminal blends in a collaborative augmented-reality learning environment. International Journal of Computer-Supported Collaborative Learning, 10(1), 7-34.
Gavish, N., Gutiérrez, T., Webel, S., Rodríguez, J., Peveri, M., Bockholt, U., & Tecchia, F. (2015). Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interactive Learning Environments, 23(6), 778-798.
Guo, W., Xue, Y., Sun, H., Chen, W., & Long, S. (2017). Utilizing augmented reality to support students’ learning in popular science courses. The Sixth International Conference of Educational Innovation through Technology. 1, 311-315
Herpich, F., Guarese, R., & Tarouco, L. (2017). A Comparative analysis of augmented reality frameworks aimed at the development of educational applications. Creative Education, 8(9), 1433-1451.
Hitt, A. M., & Townsend, J. S. (2015). The heat is on! Using particle models to change students’ conceptions of heat and temperature. Science Activities, 52(2), 45-52.
Ibáñez. M. B., Serio, Á. Di., Villarán, M. D., Delgado,K. C. (2014). Augmented reality-based simulators as discovery learning tools: An empirical Study. IEEE Transactions on Education, 58(3), 1-6.
Izard, S. G., Mendez, J.A. J., Palomera, P. R., & Garcia-Penalvo, F. J. (2019). Application of virtual and augmented reality in biomedical imaging. Journal of Medical Systems, 43, 102.
Jacobson, M. J., Taylor, C. E., & Richards, D. (2016). Computational scientific inquiry with virtual worlds and agent-based models: New ways of doing science to learn science. Interactive Learning Environments, 24(8), 2080-2108.
Jang, S., Vitale, J. M., Jyung, R. W., & Black, J. B. (2017). Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Computers & Education, 106(1), 150-165.
Ketelhut, D. J., Nelson, B., Schifter, C., & Kim, Y. (2013). Improving science assessments by situating them in a virtual environment. Education Sciences, 3, 172-192.
Kozhevnikov, M., Gurlitt, J., & Kozhevnikov, M. (2013). Learning relative motion concepts in immersive and non-immersive virtual environments. Journal of Science Education and Technology, 22(6), 952-962.
Lai, A. F., Chen, C. H., Lee, G. Y. (2015) An augmented reality-based learning approach to enhancing students’ science reading performances from the perspective of the cognitive load theory. British Journal of Educational Technology, 50(1), 232-247.
Lee, E. A. L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79, 49-58.
Lee, E. A. L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424-1442.
Lee, H. P.(2004). An example of the interaction between virtual and physical experiments in dynamics. International Journal of Mechanical Engineering Education, 32(2), 93-99.
Longden, K., Black, P., & Solomon, J. (1991). Children's interpretation of dissolving. International journal of Science Education, 13(1), 59-68.
Longden, K., Black, P., & Solomon. (1991). Children's interpretation of dissolving. International Journal of Science Education, 13(1), 59-68.
Natalie B., A. Walker., B. Shelton., J. Pederson (2017). Assessment of student learning using augmented reality grand canyon field trips for mobile smart devices. The geologial society of america, 13(2), 260-268.
Özmen H., Demircioğlu H., Demircioğlu G., (2009) The effects of conceptual change texts accompanied with animations on overcoming 11th grade students’ alternative conceptions of chemical bonding. Computers & Education, 52(3), 681-695.
Radu I., (2014). Augmented reality in education: A meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533-1543.
Rau, P.-L. P., Zheng, J., Guo, Z., & Li, J. (2018). Speed reading on virtual reality and augmented reality. Computers & Education, 125, 240-245.
Rojas-Sola, J. I., & Aguilera-Garcia, A. (2018). Virtual and augmented reality: Application for the learning of technical historical heritage. Comput Appl Eng Educ, 26, 1725-1733.
Seth, A. & Smith, S. S. (2002). PC-based virual reality for CAD model viewing. Journal of Technology Studies, 30(4), 32-37.
Sherman, W. R., & Craig, A. B. (2003). Understanding virtual reality. New York: Morgan Kaufmann Publishers.
Squire, K., Barnett, M., Grant, J. M., & Higginbotham, T. (2004). Electromagnetism supercharged! Learning physics with digital simulation games. Proceedings of the 2004 International Conference on Learning Sciences, 513-520.
Stuart, S. (1996). The design of virtual environments. New York: McGraw-Hill.
Stull, A. T., & Hegarty, M. (2015). Model manipulation and learning: Fostering representational competence with virtual and concrete models. Journal of Educational Psychology, 108, 509-527.
Sural, I. (2018). Augmented reality experience: Initial perceptions of higher education students. International Journal of Instruction, 11(4), 565-576.
Tarng, W. H., Tsai, C. F., Lin, C. M., Lee, C. Y., Liou, H. H. (2013). Development of a Virtual Transmission Electron Microscopy for Educational Applications. The 24th annual conference of the australasian association for engineering education (AAEE2013), Gold Coast, Queensland, Dec. 8-11, 2013.
Tarng, W. H., Lin, H. W., & Ou, K. L. (2014). Design of a virtual ecological pond for motion- sensing game-based learning. International Journal of Computer Science & Information Technology, 6(2), 97-117.
Tarng, W. H., Ou, K. L., Lu, Y. -C., Shih, Y.-S., & Liou, H. H. (2018). A sun path observation system based on augment reality and mobile learning. Mobile Information Systems, 1-10.
Tarng, W. H., Tsai, C.F., Lin, C.M., Lee, C.Y., & Liou, H.H. (2015). Development of an educational virtual transmission electron microscope laboratory. Virtual Reality, 19, 33-44.
Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education, 68(52), 570-585.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *