帳號:guest(3.133.122.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):余承育
作者(外文):Yu, Cheng-Yu
論文名稱(中文):以事件相關腦電位探究臺灣高中生數學洞察力
論文名稱(外文):Mathematical Insight of Senior High Students in Taiwan: an Event-Related Potential Study
指導教授(中文):許慧玉
指導教授(外文):Hsu, Hui-Yu
口試委員(中文):鄭英豪
王子華
口試委員(外文):Cheng, Ying-Hao
Wang, Tzu-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所
學號:106198704
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:68
中文關鍵詞:事件相關腦電位數學洞察力高中生一般資優數學學優
外文關鍵詞:Event-related potential(ERP)Mathematical insightSenior high school studentGeneral giftedExcellence in mathematics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:287
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以事件相關電位(Event-related potential,ERP)技術探究臺灣高中生數學洞察力,便利取樣161名新竹地區十至十二年級高中生為研究對象,並以一般資優因子與數學學優因子作為學生分類指標,並進一步探討兩因子對數學洞察力表現之影響。資料分析以行為表現以及腦波兩向度進行,行為表現部份探討答對率以及答對所需的反應時間;腦波部份則探討潛伏時間與振幅大小。

研究結果發現:在行為測量(1)較資優者以及數學能力較優異者的數學洞察力測驗、文字題型答對率較高,反應時間無顯著差異。(2)學生的幾何題型表現並無顯著差異。(3)文字題型表現較幾何題型佳。(4)一般資優因子與數學學優因子影響數學洞察力的行為表現。在腦波測量(5)在不同問題解決階段的早期成份有不同的潛伏時間與振幅大小。(6)但在晚期成份(P300、P600)腦部有相似的活躍情形,主要在頂葉與枕葉左側及右側位置上方的電極,頂葉與枕葉右側位置上方的電極尤其活躍。(7)一般資優因子與數學學優因子主要共同影響理解問題條件與理解問題階段的早期成份,在晚期成份只影響理解問題階段的P600。
This study explores the mathematics insights of high school students in Taiwan with event-related potential (ERP) technology. There are 161 grade 10-12 senior-high-school
students as the samples and divided into the group with general gifted fator and excellence in mathematics factor to investigate the impact of two factors on the performance of mathematical insight. Data analysis is composed of behavioral measurement and brain wave measurement. It discusses behavioral measurement accuracy and reaction time, but with latency and amplitude on brain wave measurement.

The results revealed: On behavioral measurement(1)The higher accuracy of mathematics insight tests and word problems for the gifted and those excellent in mathematics, but there is no significant difference in response time.(2)There is no significant difference in the behavioral results of the geometry problems.(3)The behavioral performance in word problems is better than geometry problems.(4)General gifted factor and excellence in mathematics factor would affect the behavioral results of mathematical insight. On brain wave measurement(5)There are different latency and amplitude in the early component of the three problem-solving stages.(6)However, late components (P300, P600) have similar high activation in the brain, mainly the electrodes above the left and right positions of the parietal and occipital lobe, and the electrodes above the right position of the parietal and occipital lobe are particularly active.(7)General gifted factor and excellence in mathematics factor mainly affect the early components of the understanding problem conditions and the problem understanding stage, but the two factors only affect the P600 in the understanding problem stage.
摘要 i
Abstract ii
謝辭 iii
目錄 iv
圖目次 v
表目次 vi
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與研究假設 2
第三節 名詞解釋 2
第四節 研究限制與範圍 3
第二章 文獻探討 4
第一節 數學洞察力 4
第二節 一般資賦優異與數學學習優異 7
第三節 事件相關腦電位 10
第三章 研究方法 13
第一節 研究方式與研究流程 13
第二節 研究對象 14
第三節 研究工具 15
第四節 資料蒐集與分析 18
第四章 研究結果 26
第一節 一般資優因子與數學學優因子對洞察力測驗行為表現的影響 26
第二節 一般資優因子與數學學優因子對洞察力測驗腦波訊號的影響 33
第五章 結論與建議 59
第一節 結論 59
第二節 建議 62
參考文獻 63


中文文獻
王昭傑(2013)。由「學生因素」與「課程因素」構築的資優數學樣貌。資優教育季刊(127), 23-32。https://doi.org/10.6218/geq.2013.127.23-32
呂玉琴與蘇輝國(2014)。數學資優生家長對其子女數學潛能之察覺與輔導。東臺灣特殊教育學報(16),227-249。
吳武典(2013)。臺灣資優教育四十年 (一): 回首前塵。資優教育季刊(126),1-11。
教育部(2013)。身心障礙及資賦優異學生鑑定辦法。
教育部(2019)。特殊教育法。
西文文獻
öllinger, M., & Knoblich, G. (2009). Psychological Research on Insight Problem Solving. In H. Atmanspacher & H. Primas (Eds.), Recasting Reality: Wolfgang Pauli’s Philosophical Ideas and Contemporary Science (pp. 275-300). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-85198-1_14
Bermejo, M. R., Costa, J. L. C., & Sternberg, R. J. (1996). Insight in children with high intelligence level. Faisca: revista de altas capacidades, (4), 85-94.
Bowden, E. M., & Jung-Beeman, M. (2003). Aha! Insight experience correlates with solution activation in the right hemisphere [Article]. Psychonomic Bulletin and Review, 10(3), 730-737. https://doi.org/10.3758/BF03196539
Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight [Article]. Trends in Cognitive Sciences, 9(7), 322-328. https://doi.org/10.1016/j.tics.2005.05.012
Brain Products GmbH. (2021, July). Brain Vision Analyzer 2. https://www.brainproducts.com/productdetails.php?id=17
Bruner, J. S., & Kenney, H. J. (1965). Representation and Mathematics Learning. Monographs of the Society for Research in Child Development, 30(1), 50-59. https://doi.org/10.2307/1165708
Compumedics Neuroscan. (2019). CURRY 8 (Version 8.03) [Computer software]. https://compumedicsneuroscan.com/products/curry/
Compumedics Neuroscan. (2021, April). 64-channels Quik-Cap. https://compumedicsneuroscan.com/product/64-channels-quik-cap/
Csapó, B. and J. Funke (eds.) (2017). The Nature of Problem Solving: Using Research to Inspire 21st Century Learning. OECD Publishing. http://dx.doi.org/10.1787/9789264273955-en
Davidson, J. E., & Sternberg, R. J. (2003). The psychology of problem solving. Cambridge University Press.
Danko, S. G., Starchenko, M. G., & Bechtereva, N. P. (2003). EEG local and spatial synchronization during a test on the insight strategy of solving creative verbal tasks. Human Physiology, 29(4), 502-504.
Eysenck, M. W., & Keane, M. T. (2020). Cognitive psychology: a student's handbook. Psychology Press.
Frisch, S., Schlesewsky, M., Saddy, D., & Alpermann, A. (2002). The P600 as an indicator of syntactic ambiguity. Cognition, 85(3), B83-B92.
Gilhooly, K. J., & Murphy, P. (2005). Differentiating insight from non-insight problems. Thinking & Reasoning, 11(3), 279-302. https://doi.org/10.1080/13546780442000187
Gilhooly, K. J., & Fioratou, E. (2009). Executive functions in insight versus non-insight problem solving: An individual differences approach. Thinking & Reasoning, 15(4), 355-376. https://doi.org/10.1080/13546780903178615
Gouvea, A. C., Phillips, C., Kazanina, N., & Poeppel, D. (2010). The linguistic processes underlying the P600. Language and cognitive processes, 25(2), 149-188.
Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468-484. https://doi.org/https://doi.org/10.1016/0013-4694(83)90135-9
Griffiths, H. B. (1971). Mathematical Insight and Mathematical Curricula. Educational studies in Mathematics, 4(2), 153-165.
Hersh, R., & John-Steiner, V. (2017). The Origin of Insight in Mathematics. In R. Leikin & B. Sriraman (Eds.), Creativity and Giftedness: Interdisciplinary perspectives from mathematics and beyond (pp. 135-146). Springer International Publishing. https://doi.org/10.1007/978-3-319-38840-3_9
Knoblich, G., Ohlsson, S., Haider, H., & Rhenius, D. (1999). Constraint relaxation and chunk decomposition in insight problem solving. Journal of Experimental Psychology: Learning, memory, and cognition, 25(6), 1534.
Korovkin, S., Vladimirov, I., Chistopolskaya, A., & Savinova, A. (2018). How Working Memory Provides Representational Change During Insight Problem Solving. Frontiers in psychology, 9(1864). https://doi.org/10.3389/fpsyg.2018.01864
Kong, L., Zhang, J. X., Kang, C., Du, Y., Zhang, B., & Wang, S. (2010). P200 and phonological processing in Chinese word recognition. Neuroscience Letters, 473(1), 37-41.
Kwon, Y., Lee, Y., & Nam, K. (2011). The different P200 effects of phonological and orthographic syllable frequency in visual word recognition in Korean. Neuroscience letters, 501(2), 117-121.
Lavric, A., Forstmeier, S., & Rippon, G. (2000). Differences in working memory involvement in analytical and creative tasks: an ERP study. NeuroReport, 11(8), 1613-1618. https://journals.lww.com/neuroreport/Fulltext/2000/06050/Differences_in_working_memory_involvement_in.4.aspx
Leikin, R., Waisman, I., & Leikin, M. (2016). Does solving insight-based problems differ from solving learning-based problems? Some evidence from an ERP study. ZDM, 48(3), 305-319.
Leikin R. (2020) Giftedness and High Ability in Mathematics. In: Lerman S. (eds) Encyclopedia of Mathematics Education. Springer, Cham. https://doi-org.nthulib-oc.nthu.edu.tw/10.1007/978-3-030-15789-0_65
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique. Adfo Books.
Luo, J., & Niki, K. (2003). Function of hippocampus in “insight” of problem solving. Hippocampus, 13(3), 316-323.
Luo, J., & Knoblich, G. (2007). Studying insight problem solving with neuroscientific methods. Methods, 42(1), 77-86. https://doi.org/https://doi.org/10.1016/j.ymeth.2006.12.005
Mai, X. Q., Luo, J., Wu, J. H., & Luo, Y. J. (2004). “Aha!” effects in a guessing riddle task: An event‐related potential study. Human brain mapping, 22(4), 261-270.
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33(7), 1004-1023. https://doi.org/https://doi.org/10.1016/j.neubiorev.2009.04.001
Ohlsson, S. (1992). Information-processing explanations of insight and related phenomena. Advances in the psychology of thinking, 1, 1-44.
Paz-Baruch, N., Leikin, M., Aharon-Peretz, J., & Leikin, R. (2014). Speed of information processing in generally gifted and excelling-in-mathematics adolescents. High Ability Studies, 25(2), 143-167.
Paz-Baruch, N., Leikin, R., & Leikin, M. (2016). Visual Processing in Generally Gifted and Mathematically Excelling Adolescents. Journal for the Education of the Gifted, 39(3), 237-258. https://doi.org/http://dx.doi.org/10.1177/0162353216657184
Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of clinical neurophysiology, 9(4), 456-479.
Polya, G. (2004). How to solve it. A new aspect of mathematical method. Princeton: Princeton University Press.
Psychology Software Tools, Inc. (2017). E-Prime 3.0 (Version 3.0.3.60) [Computer software]. https://pstnet.com/products/e-prime/
Qiu, J., Li, H., Yang, D., Luo, Y., Li, Y., Wu, Z., & Zhang, Q. (2008). The neural basis of insight problem solving: An event-related potential study. Brain and cognition, 68(1), 100-106.
Schoenfeld, A. H., & Herrmann, D. J. (1982). Problem perception and knowledge structure in expert and novice mathematical problem solvers. Journal of Experimental Psychology: Learning, memory, and cognition, 8(5), 484-494. https://doi.org/10.1037/0278-7393.8.5.484
Sella, F., & Cohen Kadosh, R. (2018). What expertise can tell about mathematical learning and cognition. Mind, Brain, and Education, 12(4), 186-192.
Shen, W., Liu, C., Zhang, X., Zhao, X., Zhang, J., Yuan, Y., & Chen, Y. (2013). Right hemispheric dominance of creative insight: an event-related potential study. Creativity Research Journal, 25(1), 48-58.
Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the theory in 1970. American Psychologist, 26(2), 145–159. https://doi-org.nthulib-oc.nthu.edu.tw/10.1037/h0030806
Skaar, Ø. O., & Reber, R. (2020). The phenomenology of Aha-experiences. Motivation Science, 6(1), 49-60. https://doi.org/10.1037/mot000013810.1037/mot0000138.supp (Supplemental)
Sriraman, B. (2005). Are Giftedness and Creativity Synonyms in Mathematics? Journal of Secondary Gifted Education, 17(1), 20-36. https://doi.org/10.4219/jsge-2005-389
Smith, E. E. (1995). Concepts and categorization. In E. E. Smith & D. N. Osherson (Eds.), An invitation to cognitive science: Vol. 3. Thinking(2nd ed., pp. 3–33). Cambridge, MA: MIT Press.
Spapé, M., Verdonschot, R., & Van Steenbergen, H. (2019). The E-Primer: An introduction to creating psychological experiments in E-Prime.
Stanciu, M. M., & Papasteri, C. (2018). Intelligence, personality and schizotypy as predictors of insight. Personality and Individual Differences, 134, 43-48. https://doi.org/https://doi.org/10.1016/j.paid.2018.05.043
Sternberg, R. J., & Davidson, J. E. (1995). The nature of insight. The MIT Press.
Sternberg, R. J., & Sternberg, K. (2017). Cognitive psychology. Cengage Learning.
Stylianou, D. A., & Silver, E. A. (2004). The Role of Visual Representations in Advanced Mathematical Problem Solving: An Examination of Expert-Novice Similarities and Differences. Mathematical Thinking and Learning, 6(4), 353-387. https://doi.org/10.1207/s15327833mtl0604_1
Waisman, I., Leikin, M., Shaul, S., & Leikin, R. (2013). Brain potentials during solving area-related problems: effects of giftedness and excellence in mathematics. Eighth Congress of European Research in Mathematics Education (CERME 8), Antalya,
Waisman, I., Leikin, M., Shaul, S., & Leikin, R. (2014). Brain activity associated with translation between graphical and symbolic representations of functions in generally gifted and excelling in mathematics adolescents. International Journal of Science and Mathematics Education, 12(3), 669-696. https://doi.org/10.1007/s10763-014-9513-5
Waisman, I., Leikin, M., & Leikin, R. (2016). Brain activity associated with logical inferences in geometry: focusing on students with different levels of ability. ZDM, 48(3), 321-335. https://doi.org/10.1007/s11858-016-0760-5
Webb, M. E., Little, D. R., & Cropper, S. J. (2016). Insight is not in the problem: Investigating insight in problem solving across task types. Frontiers in psychology, 7, 1424.
Webb, M. E., Little, D. R., & Cropper, S. J. (2018). Once more with feeling: Normative data for the aha experience in insight and noninsight problems. Behavior Research Methods, 50(5), 2035-2056. https://doi.org/10.3758/s13428-017-0972-9
Weisberg, R. W. (2015). Toward an integrated theory of insight in problem solving [Article]. Thinking & Reasoning, 21(1), 5-39. https://doi.org/10.1080/13546783.2014.886625
Wertheimer M. (2020) Productive Thinking (1945). In: Sarris V. (eds) Max Wertheimer Productive Thinking. Classic Texts in the Sciences. Birkhäuser, Cham. https://doi-org.nthulib-oc.nthu.edu.tw/10.1007/978-3-030-36063-4_2
Xing, Q., Zhang, J. X., & Zhang, Z. (2012). Event-related potential effects associated with insight problem solving in a Chinese logogriph task. Psychology, 3(01), 65.
Zabelina, D. L., & Ganis, G. (2018). Creativity and cognitive control: Behavioral and ERP evidence that divergent thinking, but not real-life creative achievement, relates to better cognitive control. Neuropsychologia, 118, 20-28. https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2018.02.014
Zhang, M., Tian, F., Wu, X., Liao, S., & Qiu, J. (2011). The neural correlates of insight in   Chinese verbal problems: An event related-potential study. Brain Research Bulletin, 84(3), 210-214.
Zhang, J. X., Fang, Z., Du, Y., Kong, L., Zhang, Q., & Xing, Q. (2012). Centro-parietal N200: an event-related potential component specific to Chinese visual word recognition. Chinese Science Bulletin, 57(13), 1516-1532.
Zhang, Z., Xing, Q., Li, H., Warren, C. M., Tang, Z., & Che, J. (2015). Chunk decomposition   contributes to forming new mental representations: An ERP study. Neuroscience letters,   598, 12-17.
Zohar, A. (1990). Mathematical reasoning ability: Its structure and some aspects of its genetic   transmission. Unpublished Doctoral Dissertation, Hebrew University, Jerusalem.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *