|
中文文獻 王昭傑(2013)。由「學生因素」與「課程因素」構築的資優數學樣貌。資優教育季刊(127), 23-32。https://doi.org/10.6218/geq.2013.127.23-32 呂玉琴與蘇輝國(2014)。數學資優生家長對其子女數學潛能之察覺與輔導。東臺灣特殊教育學報(16),227-249。 吳武典(2013)。臺灣資優教育四十年 (一): 回首前塵。資優教育季刊(126),1-11。 教育部(2013)。身心障礙及資賦優異學生鑑定辦法。 教育部(2019)。特殊教育法。 西文文獻 öllinger, M., & Knoblich, G. (2009). Psychological Research on Insight Problem Solving. In H. Atmanspacher & H. Primas (Eds.), Recasting Reality: Wolfgang Pauli’s Philosophical Ideas and Contemporary Science (pp. 275-300). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-85198-1_14 Bermejo, M. R., Costa, J. L. C., & Sternberg, R. J. (1996). Insight in children with high intelligence level. Faisca: revista de altas capacidades, (4), 85-94. Bowden, E. M., & Jung-Beeman, M. (2003). Aha! Insight experience correlates with solution activation in the right hemisphere [Article]. Psychonomic Bulletin and Review, 10(3), 730-737. https://doi.org/10.3758/BF03196539 Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight [Article]. Trends in Cognitive Sciences, 9(7), 322-328. https://doi.org/10.1016/j.tics.2005.05.012 Brain Products GmbH. (2021, July). Brain Vision Analyzer 2. https://www.brainproducts.com/productdetails.php?id=17 Bruner, J. S., & Kenney, H. J. (1965). Representation and Mathematics Learning. Monographs of the Society for Research in Child Development, 30(1), 50-59. https://doi.org/10.2307/1165708 Compumedics Neuroscan. (2019). CURRY 8 (Version 8.03) [Computer software]. https://compumedicsneuroscan.com/products/curry/ Compumedics Neuroscan. (2021, April). 64-channels Quik-Cap. https://compumedicsneuroscan.com/product/64-channels-quik-cap/ Csapó, B. and J. Funke (eds.) (2017). The Nature of Problem Solving: Using Research to Inspire 21st Century Learning. OECD Publishing. http://dx.doi.org/10.1787/9789264273955-en Davidson, J. E., & Sternberg, R. J. (2003). The psychology of problem solving. Cambridge University Press. Danko, S. G., Starchenko, M. G., & Bechtereva, N. P. (2003). EEG local and spatial synchronization during a test on the insight strategy of solving creative verbal tasks. Human Physiology, 29(4), 502-504. Eysenck, M. W., & Keane, M. T. (2020). Cognitive psychology: a student's handbook. Psychology Press. Frisch, S., Schlesewsky, M., Saddy, D., & Alpermann, A. (2002). The P600 as an indicator of syntactic ambiguity. Cognition, 85(3), B83-B92. Gilhooly, K. J., & Murphy, P. (2005). Differentiating insight from non-insight problems. Thinking & Reasoning, 11(3), 279-302. https://doi.org/10.1080/13546780442000187 Gilhooly, K. J., & Fioratou, E. (2009). Executive functions in insight versus non-insight problem solving: An individual differences approach. Thinking & Reasoning, 15(4), 355-376. https://doi.org/10.1080/13546780903178615 Gouvea, A. C., Phillips, C., Kazanina, N., & Poeppel, D. (2010). The linguistic processes underlying the P600. Language and cognitive processes, 25(2), 149-188. Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468-484. https://doi.org/https://doi.org/10.1016/0013-4694(83)90135-9 Griffiths, H. B. (1971). Mathematical Insight and Mathematical Curricula. Educational studies in Mathematics, 4(2), 153-165. Hersh, R., & John-Steiner, V. (2017). The Origin of Insight in Mathematics. In R. Leikin & B. Sriraman (Eds.), Creativity and Giftedness: Interdisciplinary perspectives from mathematics and beyond (pp. 135-146). Springer International Publishing. https://doi.org/10.1007/978-3-319-38840-3_9 Knoblich, G., Ohlsson, S., Haider, H., & Rhenius, D. (1999). Constraint relaxation and chunk decomposition in insight problem solving. Journal of Experimental Psychology: Learning, memory, and cognition, 25(6), 1534. Korovkin, S., Vladimirov, I., Chistopolskaya, A., & Savinova, A. (2018). How Working Memory Provides Representational Change During Insight Problem Solving. Frontiers in psychology, 9(1864). https://doi.org/10.3389/fpsyg.2018.01864 Kong, L., Zhang, J. X., Kang, C., Du, Y., Zhang, B., & Wang, S. (2010). P200 and phonological processing in Chinese word recognition. Neuroscience Letters, 473(1), 37-41. Kwon, Y., Lee, Y., & Nam, K. (2011). The different P200 effects of phonological and orthographic syllable frequency in visual word recognition in Korean. Neuroscience letters, 501(2), 117-121. Lavric, A., Forstmeier, S., & Rippon, G. (2000). Differences in working memory involvement in analytical and creative tasks: an ERP study. NeuroReport, 11(8), 1613-1618. https://journals.lww.com/neuroreport/Fulltext/2000/06050/Differences_in_working_memory_involvement_in.4.aspx Leikin, R., Waisman, I., & Leikin, M. (2016). Does solving insight-based problems differ from solving learning-based problems? Some evidence from an ERP study. ZDM, 48(3), 305-319. Leikin R. (2020) Giftedness and High Ability in Mathematics. In: Lerman S. (eds) Encyclopedia of Mathematics Education. Springer, Cham. https://doi-org.nthulib-oc.nthu.edu.tw/10.1007/978-3-030-15789-0_65 Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique. Adfo Books. Luo, J., & Niki, K. (2003). Function of hippocampus in “insight” of problem solving. Hippocampus, 13(3), 316-323. Luo, J., & Knoblich, G. (2007). Studying insight problem solving with neuroscientific methods. Methods, 42(1), 77-86. https://doi.org/https://doi.org/10.1016/j.ymeth.2006.12.005 Mai, X. Q., Luo, J., Wu, J. H., & Luo, Y. J. (2004). “Aha!” effects in a guessing riddle task: An event‐related potential study. Human brain mapping, 22(4), 261-270. Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33(7), 1004-1023. https://doi.org/https://doi.org/10.1016/j.neubiorev.2009.04.001 Ohlsson, S. (1992). Information-processing explanations of insight and related phenomena. Advances in the psychology of thinking, 1, 1-44. Paz-Baruch, N., Leikin, M., Aharon-Peretz, J., & Leikin, R. (2014). Speed of information processing in generally gifted and excelling-in-mathematics adolescents. High Ability Studies, 25(2), 143-167. Paz-Baruch, N., Leikin, R., & Leikin, M. (2016). Visual Processing in Generally Gifted and Mathematically Excelling Adolescents. Journal for the Education of the Gifted, 39(3), 237-258. https://doi.org/http://dx.doi.org/10.1177/0162353216657184 Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of clinical neurophysiology, 9(4), 456-479. Polya, G. (2004). How to solve it. A new aspect of mathematical method. Princeton: Princeton University Press. Psychology Software Tools, Inc. (2017). E-Prime 3.0 (Version 3.0.3.60) [Computer software]. https://pstnet.com/products/e-prime/ Qiu, J., Li, H., Yang, D., Luo, Y., Li, Y., Wu, Z., & Zhang, Q. (2008). The neural basis of insight problem solving: An event-related potential study. Brain and cognition, 68(1), 100-106. Schoenfeld, A. H., & Herrmann, D. J. (1982). Problem perception and knowledge structure in expert and novice mathematical problem solvers. Journal of Experimental Psychology: Learning, memory, and cognition, 8(5), 484-494. https://doi.org/10.1037/0278-7393.8.5.484 Sella, F., & Cohen Kadosh, R. (2018). What expertise can tell about mathematical learning and cognition. Mind, Brain, and Education, 12(4), 186-192. Shen, W., Liu, C., Zhang, X., Zhao, X., Zhang, J., Yuan, Y., & Chen, Y. (2013). Right hemispheric dominance of creative insight: an event-related potential study. Creativity Research Journal, 25(1), 48-58. Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the theory in 1970. American Psychologist, 26(2), 145–159. https://doi-org.nthulib-oc.nthu.edu.tw/10.1037/h0030806 Skaar, Ø. O., & Reber, R. (2020). The phenomenology of Aha-experiences. Motivation Science, 6(1), 49-60. https://doi.org/10.1037/mot000013810.1037/mot0000138.supp (Supplemental) Sriraman, B. (2005). Are Giftedness and Creativity Synonyms in Mathematics? Journal of Secondary Gifted Education, 17(1), 20-36. https://doi.org/10.4219/jsge-2005-389 Smith, E. E. (1995). Concepts and categorization. In E. E. Smith & D. N. Osherson (Eds.), An invitation to cognitive science: Vol. 3. Thinking(2nd ed., pp. 3–33). Cambridge, MA: MIT Press. Spapé, M., Verdonschot, R., & Van Steenbergen, H. (2019). The E-Primer: An introduction to creating psychological experiments in E-Prime. Stanciu, M. M., & Papasteri, C. (2018). Intelligence, personality and schizotypy as predictors of insight. Personality and Individual Differences, 134, 43-48. https://doi.org/https://doi.org/10.1016/j.paid.2018.05.043 Sternberg, R. J., & Davidson, J. E. (1995). The nature of insight. The MIT Press. Sternberg, R. J., & Sternberg, K. (2017). Cognitive psychology. Cengage Learning. Stylianou, D. A., & Silver, E. A. (2004). The Role of Visual Representations in Advanced Mathematical Problem Solving: An Examination of Expert-Novice Similarities and Differences. Mathematical Thinking and Learning, 6(4), 353-387. https://doi.org/10.1207/s15327833mtl0604_1 Waisman, I., Leikin, M., Shaul, S., & Leikin, R. (2013). Brain potentials during solving area-related problems: effects of giftedness and excellence in mathematics. Eighth Congress of European Research in Mathematics Education (CERME 8), Antalya, Waisman, I., Leikin, M., Shaul, S., & Leikin, R. (2014). Brain activity associated with translation between graphical and symbolic representations of functions in generally gifted and excelling in mathematics adolescents. International Journal of Science and Mathematics Education, 12(3), 669-696. https://doi.org/10.1007/s10763-014-9513-5 Waisman, I., Leikin, M., & Leikin, R. (2016). Brain activity associated with logical inferences in geometry: focusing on students with different levels of ability. ZDM, 48(3), 321-335. https://doi.org/10.1007/s11858-016-0760-5 Webb, M. E., Little, D. R., & Cropper, S. J. (2016). Insight is not in the problem: Investigating insight in problem solving across task types. Frontiers in psychology, 7, 1424. Webb, M. E., Little, D. R., & Cropper, S. J. (2018). Once more with feeling: Normative data for the aha experience in insight and noninsight problems. Behavior Research Methods, 50(5), 2035-2056. https://doi.org/10.3758/s13428-017-0972-9 Weisberg, R. W. (2015). Toward an integrated theory of insight in problem solving [Article]. Thinking & Reasoning, 21(1), 5-39. https://doi.org/10.1080/13546783.2014.886625 Wertheimer M. (2020) Productive Thinking (1945). In: Sarris V. (eds) Max Wertheimer Productive Thinking. Classic Texts in the Sciences. Birkhäuser, Cham. https://doi-org.nthulib-oc.nthu.edu.tw/10.1007/978-3-030-36063-4_2 Xing, Q., Zhang, J. X., & Zhang, Z. (2012). Event-related potential effects associated with insight problem solving in a Chinese logogriph task. Psychology, 3(01), 65. Zabelina, D. L., & Ganis, G. (2018). Creativity and cognitive control: Behavioral and ERP evidence that divergent thinking, but not real-life creative achievement, relates to better cognitive control. Neuropsychologia, 118, 20-28. https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2018.02.014 Zhang, M., Tian, F., Wu, X., Liao, S., & Qiu, J. (2011). The neural correlates of insight in Chinese verbal problems: An event related-potential study. Brain Research Bulletin, 84(3), 210-214. Zhang, J. X., Fang, Z., Du, Y., Kong, L., Zhang, Q., & Xing, Q. (2012). Centro-parietal N200: an event-related potential component specific to Chinese visual word recognition. Chinese Science Bulletin, 57(13), 1516-1532. Zhang, Z., Xing, Q., Li, H., Warren, C. M., Tang, Z., & Che, J. (2015). Chunk decomposition contributes to forming new mental representations: An ERP study. Neuroscience letters, 598, 12-17. Zohar, A. (1990). Mathematical reasoning ability: Its structure and some aspects of its genetic transmission. Unpublished Doctoral Dissertation, Hebrew University, Jerusalem.
|