帳號:guest(3.144.99.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張廖珮鈺
作者(外文):Chang Liao, Pei-Yu
論文名稱(中文):數學臆測教學的教師角色之研究
論文名稱(外文):Teacher’s Roles of Students Engaging in Mathematically Conjecturing Activities
指導教授(中文):林碧珍
指導教授(外文):Lin, Pi-Jen
口試委員(中文):蔡文煥
林勇吉
口試委員(外文):Tsai, Wen-Huan
Lin, Yung-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所
學號:106198507
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:125
中文關鍵詞:數學臆測論證教師角色
外文關鍵詞:conjecturingargumentationteacher’s role
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在探討數學臆測活動中教師角色的內涵。本研究的數學臆測是數學課堂中學生造例子、提出猜想、效化猜想、一般化及證明的過程,數學臆測活動能培養學生的論證能力,教師是其中影響的重要因素。然而有關於臆測教學中的教師角色相關研究較少,故本研究試由教師的行為表現和身分地位來分析數學臆測活動中教師角色內涵。研究方法採用個案研究法,觀察一位個案教師將臆測融入六年級的數學課堂教學。蒐集資料包括課堂的錄影及錄音逐字稿、學生解題紀錄。教師角色分析以Chen, Hand與 Norton-Meier(2017)的論證課堂教師角色分析架構為基礎,從八種行為表現的編碼來歸納四種具代表性的身分地位-引導者、主持人、教練及參與者。研究初步發現:在不同的臆測教學階段,教師會有不同的角色分布。造例階段中教師的角色最單一,當進入提出猜想階段時,教師會充分運用多種角色,而學生在教師的角色切換後能產出更多且品質更佳的猜想。一般化階段教師則以教練的角色為主,來刺激學生思考猜想的適用範圍,達到一般化的效果。效化及證明階段任務難度較高,教師經常扮演引導者角色,維持學生高度的專注力來意義化抽象的數學性質,此外教師經常輔以參與者的角色,在學生對話中提出關鍵的問題,有助於提高效化和證明的效率。臆測教學活動中教師角色會因應階段的性質而有不同的樣態使各個階段的效果最佳化。
In the context of conjecturing, argumentation to be initiated is a form of discourse that goes beyond conversation or interaction. Argumentation in mathematics classrooms is involved with supporting conjectures by data or warrants and rebutting by a counterexample. In this regard, a teacher cannot simply play one single role. The purpose of this study was to investigate teacher’s roles playing in students engaging in the activities of mathematically conjecturing that argumentation took place. An experienced elementary school teachers was the case of the study. The data collection in the study mainly consisted of the transcripts of videos of teaching and students’ worksheets. The analytical framework of teacher roles was based on the framework of Chen, Hand and Norton-Meier (2017). The finding of the study indicates that there were different roles and each role playing in different stages of conjecturing activities. In the stage of constructing cases, teacher played a single role, but when entering the stage of formulating conjectures, the teacher played multiple roles. Students formulated rich and high-quality conjectures as the teacher played multiple roles in different situations of conjecturing. In the stage of generalization, the teacher played a coach as a main role to stimulate the students. It is difficult for students engaging in the stage of validation and justification, thus the teacher often played the role of dispenser for students concentrating to the meaning of mathematics. This study made a contribution that the role of a teacher supporting students’ engaging in mathematical argumentation was varied by the nature of the stage of conjecturing and the roles optimized the effects of each stage of conjecturing activities.
第一章 緒論--------------------------------1
第一節 研究背景與動機-----------------------1
第二節 研究目的與待答問題-------------------4
第三節 名詞釋義----------------------------4
第四節 研究限制----------------------------5
第二章 文獻探討----------------------------6
第一節 教師角色----------------------------6
第二節數學臆測----------------------------16
第三節教師角色的分析架構-------------------32
第三章 研究方法與設計----------------------40
第一節 研究方法---------------------------40
第二節 研究架構---------------------------42
第三節 研究情境與研究對象------------------44
第四節 資料蒐集及資料分析------------------45
第五節 研究流程---------------------------55
第四章 研究結果---------------------------57
第一節 臆測教學中教師的角色分布-----------57
第二節 數學臆測五個階段中教師的角色分布-----106
第五章 討論與建議-------------------------112
第一節 討論------------------------------112
第二節 建議------------------------------116
參考文獻 --------------------------------118
中文部份 --------------------------------118
英文部審閱部份----------------------------120
1.吳煥烘&黃振恭. (2007). 創新經營的理念在學校行政領導上的應用. 教師之友, 48(1), 101-112.
2.周欣怡. (2015). 數學臆測教學課室中國小三年級學生論證結構發展之研究 (Doctoral dissertation, 新竹教大).
3.林碧珍, 鄭章華, & 陳姿靜. (2016). 數學素養導向的任務設計與教學實踐── 以發展學童的數學論證為例. Journal of Textbook Research, 9(1), 109-134.
4.林碧珍. (2012). 規律性問題下六年級學生臆測思維歷程的探討(Doctoral dissertation, 新竹教大).
5.林碧珍. (2015). 國小三年級課室以數學臆測活動引發學生論證初探. 科學教育學刊, 23(1), 83-110.
6.林福來(2010),數學臆測活動的設計,教學與評量:總計畫,台北市:行政院國家科學委員會,, NSC96-2521-S-003-001-MY3。
7.林福來主編(2015)。主動思考:貼近數學的心跳。開學文化。
8.張春興. (1989). 張氏心理學辭典, 台北市: 東華書局.
9.張桂惠. (2016). 一位國小五年級教師將數學臆測融入教學實踐之行動研究 (Doctoral dissertation, 新竹教大).
10.教育部. (2000). 國民教育九年一貫課程綱要. 台北: 教育部.
11.教育部. (2008). 國民中小學九年一貫課程綱要數學學習領域. 引自 http://www. edu. tw/eje/content. aspx.
12.教育部. (2014). 十二年國民基本教育課程綱要總綱. 臺北市: 教育部.
13.陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,第六卷第二期
14.葉正, & 社會學. (2009). 社會學詞彙. 風雲論壇.
15.鄭世仁. (2015). 教育社會學導論. 台灣五南圖書出版股份有限公司.
16.藍敏菁. (2016). 一位國小三年級教師設計臆測任務融入數學教學之行動研究 (Doctoral dissertation, 新竹教大).

Baker, S., Gersten, R., & Lee, D. S. (2002). A synthesis of empirical research on teaching mathematics to low-achieving students. T
Barkai, R., Tsamir, P., Tirosh, D. & Dreyfus, T. (2002). Proving or refuting arithmetic claims: The case of elementary school teachers. In A. D. Cockburn & E. Nardi (Eds.), Proceedings of the Twenty-sixth Annual Meeting of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 57–64), Norwich, UK.
Bauersfeld, H. E. I. N. R. I. C. H. (1998). Remarks on the education of elementary teachers. Constructivism and education, 213-232.
Berland, L. K., & Reiser, B. J. (2011). Classroom communities' adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216.
Biddle, B. J., & Thomas, E. J. (1966). Role theory: Concepts and research (No. BF774 B5).
Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1).
Cantlon, D. (1998). Kids+ conjecture= mathematics power. Teaching Children Mathematics, 5(2), 108.
Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically. Portsmouth, NH: Heinemann. Carpentier, A.(2012) Les approches et les stratégies gouvernementales de mise en œuvre des politiques éducatives. Education et Francophonie, XL, 1, 12-31.
Chen, Y. C., Hand, B., & Norton-Meier, L. (2017). Teacher roles of questioning in early elementary science classrooms: A framework promoting student cognitive complexities in argumentation. Research in Science Education, 47(2), 373-405.
Chin, C. (2007). Teacher questioning in science classrooms: Approaches that stimulate productive thinking. Journal of research in Science Teaching, 44(6), 815-843.
Chin, C., & Osborne, J. (2010). Students' questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of research in Science Teaching, 47(7), 883-908.
Cobb, P., Wood, T., Yackel, E., & McNeal, B. (1992). Characteristics of classroom mathematics traditions: An interactional analysis. American educational research journal, 29(3), 573-604.
Common Core State Standards Initiative. (2010). National Governors Association Center for Best Practices and Council of Chief State School Officers. Retrieved December, 11, 2012.
Confrey, J., & Lachance, A. (2000). Transformative Teaching Experiments through Conjecture-Driven Research Design.
Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). Teacher support for collective argumentation: A framework for examining how teachers support students’ engagement in mathematical activities. Educational Studies in Mathematics, 86(3), 401-429.
Crawford, B. A. (2000). Embracing the essence of inquiry: New roles for science teachers. Journal of research in science teaching, 37(9), 916-937.
Flores, A. (2002). How do children know that what they learn in mathematics is true? Teaching Children Mathematics, 8(5), 269-274.
Franke, M. L., & Kazemi, E. (2001). Learning to teach mathematics: Focus on student thinking. Theory into practice, 40(2), 102-109.
Funahashi, Y., & Hino, K. (2014). The teacher’s role in guiding children’s mathematical ideas toward meeting lesson objectives. ZDM, 46(3), 423-436.
Gil, J., Schwarz, B. B., & Asterhan, C. S. (2007, July). Intuitive moderation styles and beliefs of teachers in CSCL-based argumentation. In Proceedings of the 8th iternational conference on Computer supported collaborative learning (pp. 222-231). International Society of the Learning Sciences.
Hanna, G., & De Villiers, M. (Eds.). (2012). Proof and proving in mathematics education: The 19th ICMI study (Vol. 15). Springer Science & Business Media.
Hufferd-Ackles, K., Fuson, K. C., & Sherin, M. G. (2004). Describing levels and components of a math-talk learning community. Journal for research in mathematics education, 81-116.
John, M., Burton, L., & Stacey, K. (1985). Thinking Mathematically.
Kawalkar, A., & Vijapurkar, J. (2013). Scaffolding Science Talk: The role of teachers' questions in the inquiry classroom. International Journal of Science Education, 35(12), 2004-2027.
Keith, A. (2006). Mathematical argument in a second grand class: generating and justifying generalized statements about odd and even numbers. In S. Z. Smith & M. E. Smith (Eds.), Teachers engaged in research: Inquiry into mathematics classrooms, grades preK-2 (pp. 35-68).
Khisty, L. L., & Chval, K. B. (2002). Pedagogic discourse and equity in mathematics: When teachers’ talk matters. Mathematic
Kilpatrick, J., Swafford, J., & Findell, B. (2001). The strands of mathematical proficiency. Adding it up: Helping children learn mathematics, 115-118.
Kim, S., & Hand, B. (2015). An analysis of argumentation discourse patterns in elementary teachers’ science classroom discussions. Journal of Science Teacher Education, 26(3), 221-236.
Knipping, C. (2008). A method for revealing structures of argumentations in classroom proving processes. ZDM, 40(3), 427.
Knipping, C., & Reid, D. (2013). Revealing structures of argumentations in classroom proving processes. In The argument of mathematics (pp. 119-146). Springer, Dordrecht.
Krathwohl, D. R., Bloom, B. S., & Masia, B. B. (1956). Taxonomy of educational objectives: The classification of educational goals; Handbook II: Affective domain. David McKay Company, Incorporated.
Krummheuer, G. (2000). Mathematics learning in narrative classroom cultures: Studies of argumentation in primary mathematics education. For the learning of mathematics, 20(1), 22-32.
Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery (edited by J. Worrall & E. Zahar).
Lin, F. L. (2006, December). Designing mathematics conjecturing activities to foster thinking and constructing actively. Paper presented at the meeting of the APEC-TSUKUBA International Conference, Tokyo, Japan.
Lin, F. L.,Tsao, L. C.,C. Hoyles,C. Morgan,G. Woodhouse (Eds.)(1999).Rethinking the mathematics curriculum.London:Falmer Press
Lin.P.J&Horng.S.Y(2017)The Conjecturing Contributing to the Group Argumentation in Primary Classrooms. Paper presented at the 9th Classroom Teaching Research for All Students Conference. July 12 – 15, Dalian University,China.
Lubienski, S. T. (2002). Are We Achieving" Mathematical Power for All?" A Decade of National Data on Instruction and Achievement.
Makar, K., Bakker, A., & Ben-Zvi, D. (2015). Scaffolding norms of argumentation-based inquiry in a primary mathematics classroom. ZDM, 47(7), 1107-1120.
Manouchehri, A., & Enderson, M. C. (1999). Promoting mathematical discourse: Learning from classroom examples. Mathematics Teaching in the Middle School, 4(4), 216.
Mason, J., Burton, L., & Stacey, K. (2011). Thinking mathematically. Pearson Higher Ed.
National Council of Teachers of Mathematics (Ed.). (2000). Principles and standards for school mathematics (Vol. 1). National Council of Teachers of.
Peirce, C. S., & Buchler, J. (1955). How to make our ideas clear. Charles S. Peirce: The Essential Writings, 137-57
Phelps, E., & Damon, W. (1989). Problem solving with equals: Peer collaboration as a context for learning mathematics and spatial concepts. Journal of Educational Psychology, 81, 639–646.
Piaget, J. (1985). The equilibration of cognitive structures. Chicago: University of Chicago Press.
Reid, D. A., & Knipping, C. (2010). Proof in mathematics education. Research, Learning and Teaching, Rotterdam, The Netherlands: Sense Publishers.
Richards, J. (1991). Mathematical discussions. In Radical constructivism in mathematics education (pp. 13-51). Springer, Dordrecht.
Roth, W. M. (1996). Where IS the Context in Contextual Word Problem?: Mathematical Practices and Products in Grade 8 Students' Answers to Story Problems. Cognition and Instruction, 14(4), 487-527
Schwartz, J. L., & Yerushalmy, M. (1995). On the need for a bridging language for mathematical modeling. For the learning of mathematics, 15(2), 29-35.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., ... & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of research in science teaching, 46(6), 632-654.
Scott, P. H., Mortimer, E. F., & Aguiar, O. G. (2006). The tension between authoritative and dialogic discourse: A fundamental characteristic of meaning making interactions in high school science lessons. Science education, 90(4), 605-631.
Sfard, A. (2000). On reform movement and the limits of mathematical discourse. Mathematical thinking and learning, 2(3), 157-189.
Sherin, B. L. (2001). How students understand physics equations. Cognition and instruction, 19(4), 479-541.
Shirouzu, H., Miyake, N., & Masukawa, H. (2002). Cognitively active externalization for situated reflection. Cognitive science, 26(4), 469-501.

Sowder, L., & Harel, G. (1998). Types of students' justifications. The mathematics teacher, 91(8), 670.
Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: Five practices for helping teachers move beyond show and tell. Mathematical thinking and learning, 10(4), 313-340.
Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for research in Mathematics Education, 289-321.
Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behavioral and brain sciences, 16(3), 495-511.
Toulmin, S. E. (1958). The philosophy of science (Vol. 14). Genesis Publishing Pvt Ltd.
Voigt, J. (1995). Thematic patterns of interaction and sociomathematical norms. The emergence of mathematical meaning: Interaction in classroom cultures, 163-201.
Wachira, P., Pourdavood, R. G., & Skitzki, R. (2013). Mathematics Teacher's Role in Promoting Classroom Discourse. International Journal for Mathematics Teaching & Learning.
Walshaw, M., & Anthony, G. (2008). The teacher’s role in classroom discourse: A review of recent research into mathematics classrooms. Review of educational research, 78(3), 516-551.
White, D. Y. (2003). Promoting productive mathematical classroom discourse with diverse students. The Journal of Mathematical Behavior, 22(1), 37-53.
Wood, T. (1998). Alternative patterns of communication in mathematics classes: Funneling or focusing. Language and communication in the mathematics classroom, 167-178.
Yackel, E., Cobb, P., & Wood, T. (1998). The interactive constitution of mathematical meaning in one second grade classroom: An illustrative example. The Journal of Mathematical Behavior, 17(4), 469-488.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *